
RESOLVE can be applied to other aspects of structure determination as
well, suggesting that full automation of the entire structure determination
process from scaling diffraction data to a refined model will be possible in
the near future.
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Introduction

With the exception of small proteins that can be solved by ab initio
direct methods1 or proteins for which an effective molecular replacement
model exists, protein structure determination is a two-step process. If two
or more measurements are available for each reflection with differences
arising only from some property of a small substructure, then the positions
of the substructure atoms can be found first and used as a bootstrap to ini-
tiate the phasing of the complete structure. Historically, substructures were
first created by isomorphous replacement in which heavy atoms (usually
metals) are soaked into crystals without displacing the protein structure,
and measurements were made from both the unsubstituted (native) and
substituted (derivative) crystals. When possible, measurements were made
also of the anomalous diffraction generated by the metals at appropriate
wavelengths. Now, it is common to incorporate anomalous scatterers such
as selenium into proteins before crystallization and to make measurements
of the anomalous dispersion at multiple wavelengths.

The computational procedures that can be used to solve heavy-atom
substructures include both Patterson-based and direct methods. In either
case, the positions of the substructure atoms are determined from differ-
ence coefficients based on the measurements available from the diffraction
experiments as summarized in Table I. The isomorphous difference mag-
nitude, j�Fj iso (¼kFPHj�jFPk), approximates the structure amplitude,
jFH cos(�)j, and the anomalous-dispersion difference magnitude, j�Fj ano
1 G. M. Sheldrick, H. A. Hauptman, C. M. Weeks, R. Miller, and I. Usón, In ‘‘International

Tables for Crystallography’’ (M. G. Rossmann and E. Arnold, eds.), Vol. F, p. 333. Kluwer
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TABLE I

Measurements Used for Substructure Determination
a

Acronym Type of experiment Measurements

SIR Single isomorphous replacement FP, FPH

SIRAS Single isomorphous replacement

with anomalous scattering

FP, FPHþ, FPH�

MIR Multiple isomorphous replacement FP, FPH1, FPH2, . . .

MIRAS Multiple isomorphous replacement

with anomalous scattering

FP, FPH1þ, FPH1�, FPH2þ, FPH2�, . . .

SAD or SAS Single anomalous dispersion or

single anomalous scattering

FPHþ, FPH� at one wavelength

MAD Multiple anomalous dispersion FPHþ, FPH� at several wavelengths

a The notation used for the structure factors is FP (native protein), FPH (derivative), FH or

FA (substructure), Fþ and F� (for Fhkl and F
hkl

, respectively, in the presence of

anomalous dispersion).
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(¼k Fþj�jF�k), approximates 2jF 00
H sin(�)j. (The angle � is the difference

between the phase of the whole protein and that of the substructure.)
When SIRAS or MAD data are available, the differences can be combined
to give an estimate of the complete FA structure factor.2,3

Both Patterson and direct methods require extremely accurate data for
the successful determination of substructures. Care should be taken to
eliminate outliers and observations with small signal-to-noise ratios, espe-
cially in the case of single anomalous differences. Fortunately, it is usually
possible to be stringent in the application of appropriate cutoffs because
the problem is overdetermined in the sense that the number of available
observations is much larger than the number of heavy-atom positional par-
ameters. In particular, it is important that the largest isomorphous and
anomalous differences be reliable. The coefficients that are used consider
small differences between two or more much larger measurements, so
errors in the measurements can easily disguise the true signal. If there are
even a few outliers in a data set, or some of the large coefficients are serious
overestimates, substructure determination is likely to fail.

Patterson and direct-methods procedures have been implemented in a
number of computer programs that permit even large substructures to be
determined with little, if any, user intervention. (The current record is
160 selenium sites.) The methodology, capabilities, and use of several such
2 J. Karle, Acta Crystallogr. A 45, 303 (1989).
3 W. Hendrickson, Science 254, 51 (1991).
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popular programs and program packages are described in this chapter. The
SOLVE4 program, which uses direct-space Patterson search methods to
locate the heavy-atom sites, provides a fully automated pathway for
phasing protein structures, using the information obtained from MIR or
MAD experiments. The two major software packages currently in use in
macromolecular crystallography [i.e., the Crystallography and NMR
System (CNS5) and the Collaborative Computational Project Number 4
(CCP46)] provide internally consistent formats that make it easy to pro-
ceed from heavy-atom sites to density map, but user intervention is re-
quired. CNS employs both direct-space and reciprocal-space Patterson
searches. The CCP4 suite includes programs for computing Pattersons as
well as the direct-method programs RANTAN7 and ACORN.8 The dual-
space direct-method programs SnB9,10 and SHELXD11,11a provide only
the heavy-atom sites, but they are efficient and capable of solving large sub-
structures currently beyond the capabilities of programs that use only
Patterson-based methods. SnB uses a random number generator to assign
initial positions to the starting atoms in its trial structures, but SHELXD
strives to obtain better-than-random initial coordinates by deriving infor-
mation from the Patterson superposition minimum function. In some cases,
this has significantly decreased the computing time needed to find a heavy-
atom solution. Other direct-method programs (e.g., SIR200012), not
described in this chapter, also can be used to solve substructures.

Pertinent aspects of data preparation are described in detail in the
following sections devoted to the individual programs. Automated or semi-
automated procedures for locating heavy-atom sites operate by generating
many trial structures. Thus, a key step in any such procedure is the scoring
or ranking of trial structures by some measure of quality in such a way that
4 T. C. Terwilliger and J. Berendzen, Acta Crystallogr. D. Biol. Crystallogr. 55, 849 (1999).
5 A. T. Brunger, P. D. Adams, G. M. Clore, W. L. DeLano, P. Gross, R. W. Grosse-

Kunstleve, J.-S. Jiang, J. Kuszewski, M. Nilges, N. S. Pannu, R. J. Read, L. M. Rice,

T. Simonson, and G. L. Warren, Acta Crystallogr. D. Biol. Crystallogr. 54, 905 (1998).
6 Collaborative Computational Project Number 4, Acta Crystallogr. D. Biol. Crystallogr. 50,

760 (1994).
7 J.-X. Yao, Acta Crystallogr. A 39, 35 (1983).
8 J. Foadi, M. M. Woolfson, E. J. Dodson, K. S. Wilson, J.-X. Yao, and C.-D. Zheng, Acta

Crystallogr. D. Biol. Crystallogr. 56, 1137 (2000).
9 R. Miller, S. M. Gallo, H. G. Khalak, and C. M. Weeks, J. Appl. Crystallogr. 27, 613 (1994).

10 C. M. Weeks and R. Miller, Acta Crystallogr. D. Biol. Crystallogr. 55, 492 (1999).
11 G. M. Sheldrick, in ‘‘Direct Methods for Solving Macromolecular Structures’’ (S. Fortier,

ed.), p. 401. Kluwer Academic, Dordrecht, The Netherlands, 1998.
11a T. R. Schneider and G. M. Sheldrick, Acta Crystallogr. D. Biol. Crystallogr. 58, 1772 (2002).
12 M. C. Burla, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, G. Polidori, and

R. Spagna, Acta Crystallogr. A 56, 451 (2000).
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any probable solution can be identified. Therefore, the methods used to
accomplish this are described for each program, along with methods for
validating the correctness of individual sites. Where applicable, methods
used to determine the correct hand (enantiomorph) and refine the sub-
structure also are described. Finally, interesting applications to large
selenomethionine derivatives, substructures phased by weak anomalous
signals, and substructures created by short halide cryosoaks are discussed.
SOLVE

In favorable cases, the determination of heavy-atom substructures using
MAD or MIR data is a straightforward, although often lengthy, process.
SOLVE4 is designed to automate fully the analysis of such data. The over-
all approach is to link together into one seamless procedure all the steps
that a crystallographer would normally do manually and, in the process,
to convert each decision-making step into an optimization problem. A
somewhat more generalized description of SOLVE, together with a de-
scription of RESOLVE, a maximum-likelihood solvent-flattening routine,
appear in the chapter by T. Terwilliger (see [2] in this volume12a).

The MAD and MIR approaches to structure solution are conceptually
similar and share several important steps. In each method, trial partial
structures for the heavy or anomalously scattering atoms often are
obtained by inspection of difference-Patterson functions or by semiauto-
mated analysis.13–15 These initial structures are refined against the ob-
served data and used to generate initial phases. Then, additional sites and
sites in other derivatives can be found from weighted difference or gradient
maps using these phases. The analysis of the quality of potential heavy-
atom solutions is also similar for the two methods. In both cases, a partial
structure is used to calculate native phases for the entire structure, and
the electron density that results is then examined to see whether the
expected features of the macromolecule can be found. In addition, the
figure of merit of phasing and the agreement of the heavy atom model with
the difference Patterson function are commonly used to evaluate the qual-
ity of a solution. In many cases, an analysis of heavy-atom sites by sequen-
tial deletion of individual sites or derivatives is also an important criterion
of quality.16
12a T. C. Terwilliger, Methods Enzymol. 374, [2], 2003 (this volume).
13 T. C. Terwilliger, S.-H. Kim, and D. Eisenberg, Acta Crystallogr. A 43, 1 (1987).
14 G. Chang and M. Lewis, Acta Crystallogr. D. Biol. Crystallogr. 50, 667 (1994).
15 A. Vagin and A. Teplyakov, Acta Crystallogr. D. Biol. Crystallogr. 54, 400 (1998).
16 R. E. Dickerson, J. C. Kendrew, and B. E. Strandberg, Acta Crystallogr. 14, 1188 (1961).
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Data Preparation

SOLVE prepares data for heavy-atom substructure solution in two
steps. First, the data are scaled using the local scaling procedure of
Matthews and Czerwinski.17 Second, MAD data are converted to a
pseudo-SIRAS form that permits more rapid analysis.18

Systematic errors are minimized by scaling all types of data (e.g., Fþ
and F�, native and derivative, and the different wavelengths of MAD
data) in similar ways and by keeping different data sets separate until the
end of scaling. The scaling procedure is optimized for cases in which the
data are collected in a systematic fashion. For both MIR and MAD data,
the overall procedure is to construct a reference data set that is as complete
as possible and that contains information from either a native data set (for
MIR) or for all wavelengths (for MAD data). This reference data set is
constructed for just the asymmetric unit of data and is essentially the aver-
age of all measurements obtained for each reflection. The reference data
set is then expanded to the entire reciprocal lattice and used as the basis
for local scaling of each individual data set (see Terwilliger and Berendzen4

for additional details).
For MAD data, Bayesian calculations of phase probabilities are

slow.19,20 Consequently, SOLVE uses an alternative procedure for all
MAD phase calculations except those done at the final stage. This alterna-
tive is to convert the multiwavelength MAD data set into a form that is
similar to that used for SIRAS data. The information in a MAD experi-
ment is largely contained in just three quantities: a structure factor Fo cor-
responding to the scattering from nonanomalously scattering atoms, a
dispersive or isomorphous difference at a standard wavelength �o (�ISO

�o ),
and an anomalous difference (�ANO

�o ) at the same standard wavelength.18 It
is easy to see that these three quantities could be treated just like an SIRAS
data set with the ‘‘native’’ structure factor FP replaced by Fo, the derivative
structure factor FPH replaced by Fo þ (�ISO

�o ), and the anomalous difference
replaced by �ANO

�o . In this way, a single data set with isomorphous and
anomalous differences is obtained that can be used in heavy-atom refine-
ment by the origin-removed Patterson refinement method and in phasing
by conventional SIRAS phasing.21 The conversion of MAD data to a
pseudo-SIRAS form that has almost the same information content requires
two important assumptions. The first assumption is that the structure factor
17 B. W. Matthews and E. W. Czerwinski, Acta Crystallogr. A 31, 480 (1975).
18 T. C. Terwilliger, Acta Crystallogr. D. Biol. Crystallogr. 50, 17 (1994).
19 T. C. Terwilliger and J. Berendzen, Acta Crystallogr. D. Biol. Crystallogr. 53, 571 (1997).
20 E. de la Fortelle and G. Bricogne, Methods Enzymol. 277, 472 (1997).
21 T. C. Terwilliger and D. Eisenberg, Acta Crystallogr. A 43, 6 (1987).
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corresponding to anomalously scattering atoms in a structure varies in
magnitude, but not in phase, at various X-ray wavelengths. This assump-
tion will hold when there is one dominant type of anomalously scattering
atom. The second assumption is that the structure factor corresponding
to anomalously scattering atoms is small compared with the structure
factor from all other atoms.

The conversion of MAD to pseudo-SIRAS data is implemented in the
program segment MADMRG.18 In most cases, there is more than one pair
of X-ray wavelengths corresponding to a particular reflection. The esti-
mates from each pair of wavelengths are all averaged, using weighting
factors based on the uncertainties in each estimate. Data from various pairs
of X-ray wavelengths and from various Bijvoet pairs can have different
weights in their contributions to the total. This can be understood by noting
that pairs of wavelengths that differ considerably in dispersive contribu-
tions would yield relatively accurate estimates of �ISO

�o . In the same way,
Bijvoet differences measured at the wavelength with the largest value of
f 00 will contribute by far the most to estimates of �ANO

�o . The standard wave-
length choice in this analysis is arbitrary because values at any wavelength
can be converted to values at any other wavelength. The standard wave-
length does not even have to be one of the wavelengths in the experiment,
although it is convenient to choose one of them.
Heavy-Atom Searching and Phasing

The process of structure solution can be thought of largely as a deci-
sion-making process. In the early stages of solution, a crystallographer
must choose which of several potential trial solutions may be worth pursu-
ing. At a later stage, the crystallographer must choose which peaks in a
heavy-atom difference Fourier are to be included in the heavy-atom model,
and which hand of the solution is correct. At a final stage, the crystallog-
rapher must decide whether the solution process is complete and which
of the possible heavy-atom models is the best. The most important feature
of the SOLVE software is the use of a consistent scoring algorithm as the
basis for making all these decisions.

To make automated structure solution practical, it is necessary to evalu-
ate trial heavy-atom solutions (typically 300–1000) rapidly. For each poten-
tial solution, the heavy-atom sites must be refined and the phases
calculated. In implementing automated structure solution, it was important
to recognize the need for a trade-off between the most accurate heavy-
atom refinement and phasing at all stages of structure solution and the
time required to carry it out. The balance chosen for SOLVE was to use
the most accurate available methods for final phase calculations and



[3] automatic solution of heavy-atom substructures 43
to use approximate, but much faster, methods for all intermediate refine-
ments and phase calculations. The refinement method chosen on this basis
was origin-removed Patterson refinement,22 which treats each derivative in
an MIR data set independently, and which is fast because it does not re-
quire phase calculation. The phasing approach used for MIR data through-
out SOLVE is Bayesian-correlated phasing,21,23 a method that takes into
account the correlation of nonisomorphism among derivatives without
slowing down phase calculations substantially.

Once MIR data have been scaled, or MAD data have been scaled and
converted to a pseudo-SIRAS form, automated searches of difference
Patterson functions are then used to find a large number (typically 30) of
potential one-site and two-site solutions. In the case of MIR data, differ-
ence-Patterson functions are calculated for each derivative. For MAD
data, anomalous and dispersive differences are combined to yield a Baye-
sian estimate of the Patterson function for the anomalously scattering
atoms.24 In principle, Patterson methods could be used to solve the com-
plete heavy-atom substructure, but the approach used in SOLVE is to find
just the initial sites in this way and to find all others by difference Fourier
analysis. This initial set of one-site and two-site trial solutions becomes a
list of ‘‘seeds’’ for further searching. Once each of the potential seeds is
scored and ranked, the top seeds (typically five) are selected as independ-
ent starting points in the search for heavy-atom solutions.

For each seed, the main cycle in the automated structure-solution algo-
rithm used by SOLVE consists of two basic steps. The first is to refine
heavy-atom parameters and to rank all existing solutions generated from
this seed so far, on the basis of the four criteria discussed below. The
second is to take the highest-ranking partial solution that has not yet been
analyzed exhaustively and use it in an attempt to generate a more complete
solution. Generation of new solutions is carried out in three ways: by dele-
tion of sites, by addition of sites from difference Fouriers, and by reversal
of hand. A partial solution is considered to have been analyzed exhaust-
ively when all single-site deletions have been considered, when no more
peaks that result in improvement can be found in a difference Fourier,
when inversion does not cause improvement, or when the maximum
number of sites specified by the user has been reached. In each case, new
solutions generated in these ways are refined, scored, and ranked, and the
cycle is continued until all the top trial solutions have been analyzed fully
and no new possibilities are found. Throughout this process, a tally of the
22 T. C. Terwilliger and D. Eisenberg, Acta Crystallogr. A 39, 813 (1983).
23 T. C. Terwilliger and J. Berendzen, Acta Crystallogr. D. Biol. Crystallogr. 52, 749 (1996).
24 T. C. Terwilliger, Acta Crystallogr. D. Biol. Crystallogr. 50, 11 (1994).
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solutions that have already been considered is kept, and any duplicates are
eliminated.

In some cases, one clear solution appears early in this process. In other
cases, there are several solutions that have similar scores at early (and
sometimes even late) stages of the analysis. When no one possibility is
much better than the others, all the seeds are analyzed exhaustively. On
the other hand, if a promising partial solution emerges from one seed, then
the search is narrowed to focus on that seed, deletions are not carried out
until the end of the analysis, and many peaks from the difference Fourier
analysis are added simultaneously so as to build up the solution as quickly
as possible. Once the expected number of heavy-atom sites is found, then
each site is deleted in turn to see whether the solution can be further im-
proved. If this occurs, then the process is repeated in the same way by add-
ition and deletion of sites and by inversion until no further improvement is
obtained.

At the conclusion of the SOLVE algorithm, an electron-density map
and phases for the top solution are reported in a form that is compatible
with the CCP46 suite. In addition, command files that can be modified
to look for additional heavy-atom sites or to construct other electron-
density maps are produced. If more than one possible solution is found,
the heavy-atom sites and phasing statistics for all of them are reported.
Scoring, Site Validation, Enantiomorph Determination, and
Substructure Refinement

Scoring of potential heavy-atom solutions is an essential part of the
SOLVE algorithm because it allows ranking of solutions and appropriate
decision-making. Scoring, validation, and enantiomorph determination
are all part of the same process, and they are carried out continuously
during the solution process. For each trial solution, SOLVE first refines
the heavy-atom substructure against the origin-removed Patterson func-
tion. Then, it scores the trial solutions using four criteria that are described
in detail below: agreement with the Patterson function, cross-validation of
heavy-atom sites, the figure of merit, and nonrandomness of the electron-
density map. The scores for each criterion are normalized to those for a
group of starting solutions (most of which are incorrect) to obtain a so-
called Z score. The total score for a solution is the sum of its Z scores after
correction for anomalously high scores in any category. SOLVE identifies
the enantiomorph, using the score for the nonrandomness criterion. All
the other scores are independent of the hand of the heavy-atom substruc-
ture, but the final electron-density map will be just noise if anomalous
differences are measured and the hand of the heavy atoms is incorrect.
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Consequently, this score can be used effectively in later stages of structure
solution to identify the correct enantiomorph.

Patterson Agreement. The first criterion used by SOLVE for evaluating
a trial heavy-atom solution is the agreement between calculated and ob-
served Patterson functions. Comparisons of this type have always been im-
portant in the MIR and MAD methods.25 The score for Patterson function
agreement is the average value of the Patterson function at predicted peak
locations after multiplication by a weighting factor based on the number of
heavy-atom sites in the trial solution. The weighting factor4 is adjusted such
that, if two solutions have the same mean value at predicted Patterson
peaks, the one with the larger number of sites receives the higher score.
In some cases, predicted Patterson vectors fall on high peaks that are not
related to the heavy-atom solution. To exclude these contributions, the oc-
cupancies of each heavy-atom site are refined so that the predicted peak
heights approximately match the observed peak heights at the predicted
interatomic positions. Then, all peaks with heights more than 1� larger
than their predicted values are truncated. The average values are corrected
further for instances in which more than one predicted Patterson vector
falls at the same location by scaling that peak height by the fraction of
predicted vectors that are unique.

Cross-Validation of Sites. A cross-validation difference Fourier analysis
is the basis of the second scoring criterion. One at a time, each site in a so-
lution (and any equivalent sites in other derivatives for MIR solutions) is
omitted from the heavy-atom model, and the phases are recalculated.
These phases are used in a difference Fourier analysis, and the peak height
at the location of the omitted site is noted. A similar analysis, in which a
derivative is omitted from phasing and all other derivatives are used to
phase a difference Fourier, has been used for many years.16 The score for
cross-validation difference Fouriers is the average peak height after
weighting by the same factor used in the difference Patterson analysis.

Figure of Merit. The mean figure of merit of phasing, m,25 can be a re-
markably useful measure of the quality of phasing despite its susceptibility
to systematic error.4 The overall figure of merit is essentially a measure of
the internal consistency of the heavy-atom solution with the data. Because
heavy-atom refinement in SOLVE is carried out using origin-removed
Patterson refinement,22 occupancies of heavy-atom sites are relatively un-
biased. This minimizes the problem of high occupancies leading to inflated
figures of merit. In addition, using a single procedure for phasing allows
25 T. L. Blundell and L. N. Johnson, ‘‘Protein Crystallography.’’ Academic Press, New York,

1976.
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comparison among solutions. The score based on figure of merit is simply
the unweighted mean for all reflections included in phasing.

Nonrandomness of Electron Density. The most important criterion used
by a crystallographer in evaluating the quality of a heavy-atom solution is
the interpretability of the resulting electron-density map. Although a full
implementation of this criterion is difficult, it is quite straightforward to
evaluate instead whether the electron-density map has general features
that are expected for a crystal of a macromolecule. A number of features
of electron-density maps could be used for this purpose, including the con-
nectivity of electron density in the maps,26 the presence of clearly defined
regions of protein and solvent,27–33 and histogram matching of electron
densities.31,34 The identification of solvent and protein regions has been
used as the measure of map quality in SOLVE. This requires that there
be both solvent and protein regions in the electron-density map. Fortu-
nately, for most macromolecular structures the fraction of the unit cell that
is occupied by the macromolecule is in the suitable range of 30–70%. The
criteria used in scoring by SOLVE are based on the solvent and protein
regions each being fairly large, contiguous regions.33 The unit cell is di-
vided into boxes having each dimension approximately twice the resolution
of the map, and the root–mean–square (rms) electron density is calculated
within each box without including the F000 term in the Fourier synthesis.
Boxes within the protein region will typically have high values of this rms
electron density (because there will be some points where atoms are lo-
cated and other points that lie between atoms) whereas boxes in the solvent
region will have low values because the electron density will be fairly uni-
form. The score, based on the connectivity of the protein and solvent
regions, is simply the correlation coefficient of the density for adjacent
boxes. If there is a large contiguous protein region and a large contiguous
solvent region, then adjacent boxes will have highly correlated values. If
the electron density is random, there will be little or no correlation. On
the other hand, the correlation may be as high as 0.5 or 0.6 for a good map.
26 D. Baker, A. E. Krukowski, and D. A. Agard, Acta Crystallogr. D. Biol. Crystallogr. 49,

186 (1993).
27 B.-C. Wang, Methods Enzymol. 115, 90 (1985).
28 S. Xiang, C. W. Carter, Jr., G. Bricogne, and C. J. Gilmore, Acta Crystallogr. D. Biol.

Crystallogr. 49, 193 (1993).
29 A. D. Podjarny, T. N. Bhat, and M. Zwick, Annu. Rev. Biophys. Biophys. Chem. 16, 351

(1987).
30 J. P. Abrahams, A. G. W. Leslie, R. Lutter, and J. E. Walker, Nature 370, 621 (1994).
31 K. Y. J. Zhang and P. Main, Acta Crystallogr. A 46, 377 (1990).
32 T. C. Terwilliger and J. Berendzen, Acta Crystallogr. D. Biol. Crystallogr. 55, 501 (1998).
33 T. C. Terwilliger and J. Berendzen, Acta Crystallogr. D. Biol. Crystallogr. 55, 1872 (1999).
34 A. Goldstein and K. Y. J. Zhang, Acta Crystallogr. D. Biol. Crystallogr. 54, 1230 (1998).
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The four-point scoring scheme described above provides the foundation
for automated structure solution. To make it practical, the conversion of
MAD data to a pseudo-SIRAS form and the use of rapid origin-removed,
Patterson-based, heavy-atom refinement have been critical. The remainder
of the SOLVE algorithm for automated structure solution is largely a
standardized form of local scaling, an integrated set of routines to carry
out all the calculations required for heavy-atom searching, refinement,
and phasing as well as routines to keep track of the lists of current solutions
being examined and past solutions that have already been tested.

SOLVE is an easy program to use. Only a few input parameters are
needed in most cases, and the SOLVE algorithm carries out the entire pro-
cess automatically. In principle, the procedure also can be thorough: many
starting solutions can be examined, and difficult heavy-atom structures can
be determined. In addition, for the most difficult cases, the failure to find a
solution can be useful in confirming that additional information is needed.
Crystallography and NMR System

The Crystallography and NMR System (CNS)5 implements a novel Pat-
terson-based method for the location of heavy atoms or anomalous scatter-
ers.35 The procedure is implemented using a combination of direct-space
and reciprocal-space searches, and it can be applied to both isomorphous
replacement and anomalous scattering data. The goal of the algorithm is
to make it practical to locate automatically a subset of the heavy atoms
without manual interpretation or intervention. Once the sites have been lo-
cated, CNS provides tools for heavy-atom refinement, phase estimation,
density modification, and heavy-atom model completion. These tools,
known as task files, are scripts written in the CNS language and are sup-
plied with reasonable default parameters. Using these task files, the process
of phasing is greatly simplified and initial electron-density maps, even for
large complex structures, can be calculated in a relatively short time.
CNS has been used successfully to solve problems with up to 4036 and 66
selenium sites (see Applications, below).

Data Preparation

Sigma Cutoffs and Outlier Elimination. The peaks in a Patterson map
correspond to interatomic vectors of the crystal structure.37 However, the
35 R. W. Grosse-Kunstleve and A. T. Brunger, Acta Crystallogr. D. Biol. Crystallogr. 55, 1568

(1999).
36 M. A. Walsh, Z. Otwinowski, A. Perrakis, P. M. Anderson, and A. Joachimiak, Struct.

Fold. Des. 8, 505 (2000).
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atoms are not point scatterers, and there are errors associated with experi-
mental data, making the interpretation of the Patterson map difficult.
Therefore, steps are taken to minimize the amount of error that is intro-
duced. In practice, the suppression of outliers can be essential to the suc-
cess of a heavy atom search.38 In CNS, reflections are first rejected on the
basis of their signal-to-noise ratio (‘‘sigma cutoff’’). This is performed on
both the observed amplitudes and the computed difference between pairs
of amplitudes. For the computation of differences, the observed amplitudes
are scaled relative to each other, using overall k-scaling and B-scaling in
order to compensate for systematic errors caused by differences between
crystals and data collection conditions. Additional reflections are rejected
if their amplitudes or difference amplitudes deviate too much from the
corresponding root–mean–square (rms) value for all of the data in their
resolution shell (‘‘rms outlier removal’’). Empirical observation has led
to the values of the rejection criteria shown in Table II. Except for the
37 M. J. Buerger, ‘‘Vector Space.’’ John Wiley & Sons, New York, 1959.
38 G. M. Sheldrick, Methods Enzymol. 276, 628 (1997).

TABLE II

Default Parameters for CNS Automated Heavy-Atom Search Procedure

Parameter Default valuea Commentb

Number of sites 2/3 of total

expected

Typically not all sites are well ordered, and

it is easy to add additional sites using

gradient map methods once phasing has

started with the 2/3 partial solution

Minimum Bragg

spacing

4.0 Å If there are a large number of heavy-atom

sites per macromolecule, a higher resolution

limit may be required (3.5 Å)

Averaging of

Patterson maps

No If solutions are not found with a single map,

then multiple maps can be tried

Special positions No Can be set to true if the heavy atoms have

been soaked into the crystal

Sigma cutoff on F 1 Decrease to 0 for FA structure factors

RMS outlier cutoff on

F for native or on

�F for difference

Patterson maps

4 Increase to 10 for FA structure factors

Expected increase in

correlation coefficient

for dead-end test

0.01 When there are a large number of heavy-atom

sites, it may be necessary to decrease this

value (to 0.005)

a Values present in the heavy_search.inp task file supplied with CNS.
b Situations in which the default parameter may require modification.
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instances noted in Table II, these values can generally be used without
modification.

Combining Patterson Maps. CNS provides the option to average Patter-
son maps based on different data sets. For example, several MAD wave-
lengths or a combination of isomorphous and anomalous difference maps
can be combined. This is useful if the signal in any individual data set is
too weak to locate the heavy atoms unambiguously. A small signal-to-noise
ratio in the observed data leads to noise in the Patterson maps. The com-
bination of data increases the signal-to-noise ratio in the resulting Patter-
son map by averaging out the noise and, therefore, improves the chances
of locating the heavy-atom positions (Fig. 1d).

Using FA Structure Factors. If MAD data are available, it is possible to
define structure factors FA that are approximations to the component of
the observed structure factors resulting from the anomalous scatterers.2,3,18

FA structure factors can be calculated using programs such as XPREP,39

MADSYS,3 or the MADBST module of SOLVE.4 Although CNS does
not perform FA estimation, the heavy-atom search procedure can make
use of this information and that has been found to increase the chances
for locating the correct sites (Fig. 1e). Ideally, an algorithm for the estima-
tion of FA structure factors includes a careful treatment of outliers similar
to the sigma cutoff and rms outlier removal outlined above. If this is the
case, the parameters for the sigma cutoff and rms outlier removal in CNS
should be adjusted to include all data in the heavy-atom search procedure
(see Table II).

Heavy-Atom Searching

The CNS heavy-atom search procedure (Fig. 2) consists of four stages
that are described in more detail by Grosse-Kunstleve and Brunger.35 In
the first stage, the observed diffraction intensities are filtered by the criteria
described above, and two or more Patterson maps (calculated from MIR,
MAD, or MIRAS data) can be averaged. The second stage consists of a
Patterson search by either a reciprocal-space single-atom fast translation
function, by a direct-space symmetry minimum function, or by a combin-
ation of both. Combination searches have been shown to be the most ac-
curate.35 A given number (typically 100) of the highest peaks in the
resulting Patterson search map are sorted and subsequently used as initial
trial sites. The third stage consists of a sequence of alternating reciprocal-
space or direct-space Patterson searches as well as Patterson-correlation
39 Written by G. Sheldrick. Available from Bruker Advanced X-Ray Solutions (Madison,

WI).
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Fig. 1. Results of automated CNS heavy-atom search with the MAD data from 2-

aminoethylphosphonate transaminase. Sixty-six selenium sites are present in the asymmetric

unit. Automated searches for 44 sites (two-thirds of the expected total) were performed. In all

cases, 100 trial solutions were generated and sorted by the correlation coefficient (F2F2). (a) No

solutions were found using the anomalous �F structure factors at the high-energy remote

wavelength as indicated by no separation between the trials. (b) A few solutions were found

using the anomalous �F structure factors at the peak wavelength. (c) The anomalous �F

structure factors at the inflection-point wavelength found more solutions, indicating a larger

anomalous signal than the peak wavelength. (d) Using combined anomalous �F structure

factors at the inflection-point wavelength and the dispersive differences between the inflection

point and high-energy remote gave an even higher success rate. (e) Finally, the greatest success

rate was with FA structure factors calculated from all three wavelengths, using XPREP.39
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(PC) refinements40 starting with each of the initial trial sites. The highest
peak is selected that has distances to its symmetrically equivalent points
and all preexisting sites larger than the given cutoff distance. If two or more
sites already have been placed, a dead-end elimination test is performed.
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Fig. 2. CNS automated heavy-atom location protocol.
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The correlation coefficient computed before placing and refining the last
new site is compared with the correlation coefficient computed after the
addition of the new site. If the target value does not increase by a specified
amount, typically 0.01 (see Table II), then the search for that particular ini-
tial trial site is deemed to have reached a dead end, and no additional sites
are placed. Otherwise, another Patterson search is carried out until the
expected number of sites is found. The final stage consists of sorting the so-
lutions ranked by the value of the target function (a correlation coefficient)
40 A. T. Brunger, Acta Crystallogr. A 47, 195 (1991).
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of the PC refinement. If the correct solution has been found, it is normally
characterized by the best value of the target function and a significant sep-
aration from incorrect solutions (compare, e.g., Fig. 1a and b).

Reciprocal-Space Method: Single-Atom Fast Translation Function. A
single heavy-atom site is translated throughout an asymmetric unit, and
the standard linear correlation coefficient of F2

patt and F2
calc(t) (referred to

as F2F2) is computed for each position t:

F2F2ðtÞ ¼

P
H

ðF2
H;patt � hF2

pattiÞðF2
H;calc � hF2

calciÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
H

ðF2
H;patt � hF2

pattiÞ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

H

ðF2
H;calc � hF2

calciÞ
2

r (1)

The summations are computed for all Miller indices H, and hF 2i denotes
the mean of F 2 over all Miller indices. Other target expressions can be used
including the correlation coefficient between Fpatt and Fcalc(t), E2

patt and
E2

calc(t), and Epatt and Epatt and Ecalc(t), where the E values are normalized
structure factors (see Dual-Space Direct Methods, below). The F2F2 target
function is preferred because it permits the use of a fast translation func-
tion (FTF),41 which is 300–500 times faster35 than the conventional transla-
tion function.42 Thus, the FTF makes the automated reciprocal-space
heavy-atom search procedure practical even for large numbers of sites.
The reciprocal-space search for an additional site is similar to the search
for the initial trial sites, except that the previously placed sites are kept
fixed and are included in the structure-factor (Fcalc) calculation.41

Direct-Space Method: Symmetry and Image-Seeking Minimum Func-
tions. The symmetry minimum function (SMF)43–45 makes maximal use of
the information contained in the Harker regions. The computation of an
SMF requires a Patterson map as well as a table of the unique Harker
vectors and their weights.43 These Harker vectors and weights are supplied
automatically by CNS. The image-seeking minimum function (IMF)43,45

can be used to locate additional sites once one or more are placed. Com-
puting an IMF map is equivalent to a deconvolution of the Patterson
map using knowledge of the already placed heavy-atom sites. Because of
coincidental overlap of peaks in the Patterson map, thermal motion of
the sites, and noise in the data, the IMF maps typically provide only limited
information for macromolecular crystal structures.
41 J. Navaza and E. Vernoslova, Acta Crystallogr. A 51, 445 (1995).
42 M. Fujinaga and R. J. Read, J. Appl. Crystallogr. 20, 517 (1987).
43 P. G. Simpson, R. D. Dobrott, and W. N. Lipscomb, Acta Crystallogr. 18, 169 (1965).
44 F. Pavelcik, J. Appl. Crystallogr. 19, 488 (1986).
45 M. A. Estermann, Nucl. Instr. Methods Phys. Res. A 354, 126 (1995).
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Peak Search and Special Position Check. The list of initial trial sites is
determined by a peak search in the single-atom FTF, the SMF, or their
combination. A grid point is considered to be a peak if the corresponding
density in the map is at least as high as that of its six nearest neighbors. Re-
dundancies due to space-group symmetry and allowed origin shifts are
automatically removed. Similarly, additional sites are determined by a
peak search in the FTF, the IMF, or their combination. The treatment of
redundancies due to symmetry is fully integrated into the search procedure.

Sites at or close to a special position can be accepted or rejected. In the
latter case, the shortest distance to all its symmetry equivalent sites is com-
puted for each of the trial sites. If this distance is less than a given cutoff
distance (typically 3.5 Å), the site is rejected. Because selenomethionine
substitution is the predominant technique for introducing anomalous scat-
terers into a macromolecule, the rejection of peaks on special positions is
set to be the default. However, if heavy atoms have been soaked, cocrystal-
lized, or chemically reacted with the macromolecule, a site could be located
on a special position. In such cases, it is appropriate to search for heavy
atoms first with special positions rejected and then with them accepted in
order to determine whether further sites are found.
Scoring Trial Structures

The result of the CNS heavy-atom search is a number of trial solutions,
each containing up to the specified maximum number of sites. There are
typically as many of these trial solutions as were requested by the user
before running the heavy_search.inp task file. However, when the input
Patterson map has only a small number of peaks, it is possible that there
will be fewer trial solutions found. The trial solutions can be ranked by
the scoring function (which is typically F2F2, the correlation between the
squared amplitudes), but other score functions can be used. Although the
absolute value of the correlation coefficient could be used as a guide to
the correctness of each trial solution, empirical observation has shown that
a more informative guide is the presence of solutions with correlation coef-
ficients that are outstanding compared with the rest (Fig. 1). Similar obser-
vations have also been made by the authors of other automatic programs
for locating heavy atoms.9

The heavy_search.inp task file creates a list file (heavy_search.list) that
contains an unsorted list of the score function for each trial solution. Each
solution with a correlation score that is 1.5� above the mean of all the
solutions is marked with a plus sign (þ). To interpret the results easily, the
list of configurations can be sorted by correlation coefficient and then plot-
ted graphically (Fig. 1). In the majority of cases encountered to date, if the
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solution with the highest correlation is also more than 1.5� above the mean,
then all or most of the heavy-atom positions in that solution are correct.

Substructure Refinement, Site Validation, and
Enantiomorph Determination

The trial solutions produced by the automated heavy-atom search are
used to determine initial phases to generate an electron-density map. Sev-
eral different tasks must be performed in order to refine the heavy-atom
substructure, calculate phases, complete the heavy-atom model, resolve
the enantiomorph, and possibly resolve phase ambiguities. A similar ap-
proach is followed for MAD, SAD, and (M/S)IR(AS) experiments. In all
cases, the following methods are employed.

Substructure Refinement. The heavy-atom sites located automatically
with CNS are refined and phase probability distributions generated using
the ir_phase.inp or mad_phase.inp task files that deal with isomorphous re-
placement and anomalous diffraction, respectively. A generalized phase re-
finement formulation is used when lack-of-closure expressions are
calculated between a user-selected reference data set and all other data
sets.46,47 A maximum-likelihood target function47 is employed that makes
use of an error model similar to that of Terwilliger and Eisenberg.21 Coord-
inates, B-factors and, when appropriate, occupancies are refined using the
Powell conjugate gradient minimization algorithm.48

Site Validation. The heavy-atom positions are not extensively validated
during the search procedure; instead, the refinement of B-factors during
each cycle decreases the contribution from incorrect sites. After phase cal-
culation, the gradient map technique is used to validate the existing sites
further, and also to detect sites missing from the current model.49 The gra-
dient map is a Fourier synthesis calculated from the first derivative of the
phasing target function, which can be interpreted as a difference map. A
positive peak, clearly separated from any existing atom, corresponds to
an atom missing from the heavy-atom model whereas a negative peak, lo-
cated at the position of an existing atom, indicates that this atom is either
incorrectly placed or has been assigned an incorrect chemical type or occu-
pancy. Anisotropic motion of atoms in the substructure also can lead to
peaks in the gradient map close to existing sites.

Enantiomorph Determination. The use of the gradient map method in
combination with substructure refinement allows the heavy-atom model
46 J. C. Phillips and K. O. Hodgson, Acta Crystallogr. A 36, 856 (1980).
47 F. T. Burling, W. I. Weis, K. M. Flaherty, and A. T. Brunger, Science 271, 72 (1996).
48 M. J. D. Powell, Math. Program. 12, 241 (1977).
49 G. Bricogne, Acta Crystallogr. A 40, 410 (1984).
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to be completed even though the correct hand of the heavy-atom configur-
ation is often still unknown. In CNS, the correct hand is determined by
repeating the phase determination with the alternate hand followed by in-
spection of the two electron-density maps (see below). In the majority of
cases, obtaining the alternative hand is achieved simply by inverting the co-
ordinates about the origin. However, in the case of enantiomorphic space
groups, the space group must be changed at the same time as the coordin-
ates are inverted (e.g., P61 is mapped to P65). In addition, in a small
number of space groups, the inversion of the coordinates is not about
the origin, but rather some other point in the unit cell. The CNS task file
flip_sites.inp automatically takes account of both of these situations.

Once phasing has been performed with the two possible choices of
heavy-atom coordinates, the electron-density maps can be compared to de-
termine which hand is correct. Making this decision from the raw experi-
mental phases is feasible only with high-quality MIR(AS) or MAD data
sets. In such cases, the solvent boundary, secondary structure elements,
or atomic detail in the electron-density map can show clearly which
heavy-atom configuration is correct. However, in the general case the raw
experimental phases are not sufficient to reveal such features. In particular,
in the case of a single anomalous diffraction (SAD) or a single isomorph-
ous replacement (SIR) experiment, it is not possible to distinguish the
two hands in this way because of the bimodal phase distributions that are
produced. Therefore, it is usually better to perform phase improvement
by density modification in the form of solvent flattening or solvent flip-
ping50 to resolve the phase ambiguity present in the SAD and SIR cases.
The CNS task file density_modify.inp should be used to improve the phases
irrespective of the type of phasing experiment. After density modification
of phases from both heavy-atom hands, the electron-density maps usually
identify the correct hand unambiguously and generate maps good enough
to begin model building.
Dual-Space Direct Methods: SnB and SHELXD

Direct methods are techniques that use probabilistic relationships
among the phases to derive values of the individual phases from the meas-
ured amplitudes. The purpose of this section is to give a concise summary
of these techniques as they apply to substructure determination. The basic
theory underlying direct methods,51 as well as macromolecular applications
50 J. P. Abrahams and A. G. W. Leslie, Acta Crystallogr. D. Biol. Crystallogr. 52, 30 (1996).
51 C. Giacovazzo, in ‘‘International Tables for Crystallography’’ (U. Shmueli, ed.), Vol. B,

p. 201. Kluwer Academic, Dordrecht, The Netherlands, 1996.



56 phases [3]
of direct methods,1 have been reviewed; the reader is referred to these
sources for additional details. Historically, direct methods have targeted
the determination of complete structures, especially small molecules con-
taining fewer than 100 nonhydrogen atoms. In the early 1990s, the size
range of routine direct-methods applications was extended by almost an
order of magnitude through a procedure that has come to be known as
Shake- and-Bake.52,53 The distinctive feature of this procedure is the
repeated and unconditional alternation of reciprocal-space phase refine-
ment (Shaking) with a complementary real-space process that seeks to im-
prove phases by applying constraints (Baking). This algorithm has been
implemented independently in two computer programs, SnB9,10 and
SHELXD11,11a (alias Halfbaked or SHELXM). These programs provide
default parameters and protocols for the phasing process, but they allow
easy user intervention in difficult cases.

It has been recognized for some time that the formalism of direct
methods carries over to substructures when applied to single isomorph-
ous54 (SIR) or single anomalous55 (SAD or SAS) difference data. MIR
data can be accommodated simply by treating the data separately for each
derivative, and MAD data can be handled by examining the anomalous dif-
ferences for each wavelength individually or by combining them together
in the form of FA structure factors.2,3 The dispersive differences between
two wavelengths of MAD data also can be treated as pseudo-SIR differ-
ences. If substructure determination were the only concern, it is unclear
whether it would be best to measure anomalous scattering data a few times
for each of three wavelengths or many times for one wavelength. What is
clear is that high redundancy leads to a highly beneficial reduction in meas-
urement errors. SnB and SHELXD can both use either j�FANOj or jFAj
values, and so far both approaches have worked well. SnB is normally ap-
plied to peak-wavelength anomalous differences computed using the
DREAR56 program suite, and SHELXD is normally applied to j�FANOj
or jFAj values that have been calculated using XPREP.39 It is reassuring
to know that one wavelength is generally sufficient for substructure deter-
mination when not all wavelengths were measured or when one or more
wavelengths were in error. In addition, treating the wavelengths separately
allows for useful cross-correlation of sites (see below, Site Validation).
52 C. M. Weeks, G. T. DeTitta, R. Miller, and H. A. Hauptman, Acta Crystallogr. D. Biol.

Crystallogr. 49, 179 (1993).
53 C. M. Weeks, G. T. DeTitta, H. A. Hauptman, P. Thuman, and R. Miller, Acta Crystallogr.

A 50, 210 (1994).
54 K. S. Wilson, Acta Crystallogr. B 34, 1599 (1978).
55 A. K. Mukherjee, J. R. Helliwell, and P. Main, Acta Crystallogr. A 45, 715 (1989).
56 R. H. Blessing and G. D. Smith, J. Appl. Crystallogr. 32, 664 (1999).
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The largest substructure solved so far by direct methods contained 160
independent selenium sites.57 The upper limit of size is unknown, but, by
analogy to the complete structure case, it is reasonable to think that it is
at least a few hundred sites. In all likelihood, the inherently noisier nature
of difference data and the fact that j�FANOj and jFAj values provide imper-
fect approximations to the substructure amplitudes mean that the maximal
substructure size that can be accommodated is probably less than that of
complete structures. Although, at present, full structure direct-methods ap-
plications require atomic-resolution data of 1.2 Å or better, the resolution
of the data typically collected for isomorphous replacement or MAD ex-
periments is sufficient for direct-methods determinations of substructures.
Because it is rare for heavy atoms or anomalous scatterers to be closer than
3–4 Å, data having a maximum resolution in this range are adequate.

Data Preparation

Normalization. To take advantage of the probabilistic relationships that
form the foundation of direct methods, the usual structure factors, F, must
be replaced by the normalized structure factors,58 E. The condition hjEj2i ¼
1 is always imposed for every data set. Unlike hjFji which decreases as
sin(�)/� increases, the values of hjEji are constant for concentric resolution
shells. Similarly, correction factors (e) are applied that take into account
the average intensities of particular classes of reflections as a result of
space-group symmetry.59 The distribution of jEj values is, in principle,
and often in practice, independent of the unit cell size and contents, but
it does depend on whether a center of symmetry is present. Normalization
is a necessary first step in data processing for direct-methods computations.
It can be accomplished simply by dividing the data into resolution shells
and applying the condition hjEj2i ¼ 1 to each shell. Alternatively, a least-
squares-fitted scaling function can be used to impose the normalization
condition. The procedures are similar regardless of whether the starting in-
formation consists of jFj, j�Fj (iso or ano), or jFAj values and leads to jEj,
jE�j, or jEAj values. Mathematically precise definitions of the SIR and
SAD difference magnitudes, jE�j, that take into account the atomic scat-
tering factors jfjj ¼ jf o

j þ f 0j þ if 00j j have been presented by Blessing and
Smith56 and implemented in the program DIFFE that is distributed as part
57 F. von Delft, T. Inoue, S. A. Saldanha, H. H. Ottenhof, F. Schmitzberger, L. M. Birch,

V. Dhanaraj, M. Witty, A. G. Smith, T. L. Blundell, and C. Abell, Struct. 11, 985 (2003).
58 H. A. Hauptman and J. Karle, ‘‘Solution of the Phase Problem. I. The Centrosymmetric

Crystal.’’ ACA Monograph No. 3. Polycrystal Book Service, Dayton, OH, 1953.
59 U. Shmueli and A. J. C. Wilson, in ‘‘International Tables for Crystallography’’ (U. Shmueli,

ed.), Vol. B, p. 190. Kluwer Academic, Dordrecht, The Netherlands, 1996.
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of the SnB package. The jFAj values that are used in SHELXD to form
jEAj values are computed in XPREP,39 using algorithms similar to those
employed in the MADBST component of SOLVE.4

Sigma Cutoffs and Outlier Elimination. Direct methods are notoriously
sensitive to the presence of even a small number of erroneous measure-
ments. This is especially problematical in the case of difference data, which
can be quite noisy. The best antidote is to eliminate any questionable meas-
urement before initiating the phasing process. Fortunately, it is possible to
be stringent in the application of cutoffs because the number of difference
reflections that must be phased is typically a small fraction of the total
available observations. In small-molecule cases in which all reflections ac-
cessible to copper radiation have been measured, it is normal to phase
about 10 reflections for every atom to be found, and this means that about
15% of the total data are used. In substructure cases, the unit cell for an
N-site problem will be much larger than it would be for a small molecule
with the same number of atoms to be positioned. Thus, the number of pos-
sible reflections will also be much larger, and many more can be rejected if
necessary. In fact, only 2–3% of the total possible reflections at 3 Å need
be phased in order to solve substructures using direct methods, but these
reflections must be chosen from those with the largest jE�j values.

The DIFFE56 program rejects data pairs (jE1j, jE2j) [i.e., SIR pairs
(jEPj, jEPHj), SAD pairs (jEþj, jE�j), and pseudo-SIR dispersive pairs
(jE�1j, jE�2j)] or difference E magnitudes (jE�j) that are not significantly
different from zero or deviate markedly from the expected distribution.
The following tests are applied when the default values, supplied by the
SnB interface for the cutoff parameters (TMAX, XMIN, YMIN, ZMIN, and
ZMAX), are shown in parentheses and are based on empirical tests with
known data sets.60,61

1. Pairs of data are excluded if j(jE1j�jE2j)�median(jE1j�jE2j)j/{1.25
� median[j(jE1j�jE2j)�median(jE1j�jE2j)j]} > TMAX (6.0).

2. Pairs of data are excluded for which either jE1j/�(jE1j) or jE2j/
�(jE2j) < XMIN (3.0).

3. Pairs of data are excluded if kE1j�jE2k/[�2(jE1j) þ �2(jE2j)]1/2 <
YMIN (1.0).

4. Normalized jE�j are excluded if jE�j/�(jE�j) < ZMIN (3.0).
5. Normalized jE�j are excluded if [jE�j�jE�jMAX]/�(jE�j) > ZMAX

(0.0).
60 G. D. Smith, B. Nagar, J. M. Rini, H. A. Hauptman, and R. H. Blessing, Acta Crystallogr.

D. Biol. Crystallogr. 54, 799 (1998).
61 P. L. Howell, R. H. Blessing, G. D. Smith, and C. M. Weeks, Acta Crystallogr. D. Biol.

Crystallogr. 56, 604 (2000).



[3] automatic solution of heavy-atom substructures 59
The parameter TMAX is used to reject data with unreliably large values of
kE1j�jE2k in the tails of the (jE1j�jE2j) distribution. This test assumes that
the distribution of (jE1j�jE2j)/�(jE1j�jE2j) should approximate a zero-
mean unit-variance normal distribution for which values less than �TMAX

or greater than þTMAX are extremely improbable. The quantity jE�jMAX is
a physical least upper bound such that jE�jMAX ¼

P
jf j/[e

P
jf j2]1/ 2 for SIR

data and jE�j MAX ¼
P

f 00/[e
P

(f 00)2]1/2 for SAD data.
Resolution Cutoffs. Before attempting to use MAD or SAD data to

locate the anomalous scatterers, a critical decision is to choose the reso-
lution to which the data should be truncated. If data are used to a higher
resolution than is supported by significant dispersive and anomalous infor-
mation, the effect will be to add noise. Because direct methods are based
on normalized structure factors, which emphasize the high-resolution data,
they are particularly sensitive to this. Because there is some anomalous
signal at all the wavelengths in the MAD experiment, a good test is to cal-
culate the correlation coefficient between the signed anomalous differences
�F at different wavelengths as a function of the resolution. A good general
rule is to truncate the data where this correlation coefficient falls below
25–30%. Table III (calculated using XPREP39) illustrates three different
cases. In case A, the high values involving the peak (PK) and inflection-
point (IP) data show that it is not necessary to truncate the data because
there is significant MAD information at the highest resolution collected.
A poorer correlation would be expected with the low-energy remote data
(LR), which has a much smaller anomalous signal. In case B, it is advisable
to truncate the data to about 3.9 Å (which indeed led to a successful solu-
tion using SHELXD). Case C is clearly hopeless and, in fact, could not be
solved. For SAD data collected at a single wavelength, it is still possible to
use the correlation coefficient between the anomalous differences collected
from two crystals, or from one crystal in two orientations, before merging
the two data sets. Such information is also available from the CCP4 pro-
grams SCALA and REVISE (see Collaborative Computational Project
Number 4, below).
Heavy-Atom Searching and Phasing

The phase problem of X-ray crystallography may be defined as the
problem of determining the phases � of the normalized structure factors
E when only the magnitudes jEj are given. Owing to the atomicity of crystal
structures and the redundancy of the known magnitudes, the phase prob-
lem is overdetermined. This overdetermination implies the existence of re-
lationships among the phases that are dependent on the known magnitudes
alone, and the techniques of probability theory have identified the linear



TABLE III

Correlation Coefficients (%) Between High-Energy Remote Data and

Other Wavelengths as a Function of Resolution Range

A. Apical domain,a 1 � (3 SeMet in 144 residues), C2221

Inf – 8.0 – 6.0 – 5.0 – 4.0 – 3.6 – 3.4 – 3.2 – 3.0 – 2.8 – 2.6 – 2.4 – 2.2

PK 91.2 93.9 93.9 89.6 88.6 89.4 89.4 83.9 76.9 65.7 57.0 44.8

IP 89.7 90.0 87.0 84.4 79.8 78.9 79.4 74.7 71.1 54.3 47.2 39.2

LR 48.5 52.8 52.9 38.0 28.4 34.6 14.2 21.1 24.7 9.1 5.4 �3.7

B. Ribosome recycling factor,b 1 � (4 SeMet in 185 residues), P43212

Inf – 8.0 – 6.0 – 5.0 – 4.6 – 4.4 – 4.2 – 4.0 – 3.8 – 3.6 – 3.4 – 3.2 – 3.0

PK 69.3 73.1 62.2 56.9 49.6 45.6 48.6 29.6 20.6 24.6 20.1 14.2

IP 59.4 58.3 41.9 43.3 40.7 50.4 34.6 24.7 17.5 16.6 8.1 3.9

C. Unknown protein, 4 � (4 SeMet in 350 residues), P21

Inf – 8.0 – 6.0 – 5.0 – 4.6 – 4.4 – 4.2 – 4.0 – 3.8 – 3.6 – 3.4 – 3.2 – 3.0

PK 33.2 29.5 19.9 10.6 7.7 17.4 7.6 9.8 9.3 13.4 6.0 2.8

IP 37.6 38.9 37.8 26.5 13.5 24.0 14.2 27.3 25.9 23.1 24.3 22.8

Abbreviations: PK, peak; IP, inflection point; LR, low-energy remote.
a M. A. Walsh, I. Dementieva, G. Evans, R. Sanishvili, and A. Joachimiak, Acta

Crystallogr. D. Biol. Crystallogr. 55, 1168 (1999).
b M. Selmer, S. Al-Karadaghi, G. Hirokawa, A. Kaji, and A. Liljas, Science 286, 2349 (1999).
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combinations of three phases whose Miller indices sum to zero (i.e., �HK ¼
�H þ �K þ ��H�K) as relationships useful for determining unknown struc-
tures. (The quantities �HK are known as structure invariants because their
values are independent of the choice of origin of the unit cell.) The condi-
tional probability distribution of the three-phase or triplet invariants
depends on the parameter AHK, where AHK ¼ (2/N 1/2)jEHEKE�H�Kj and
N is the number of atoms, here presumed to be identical, in the asymmetric
unit of the corresponding primitive unit cell.62 Probabilistic estimates of the
invariant values are most reliable when the associated normalized magni-
tudes (jEHj, jEKj, and jE�H�Kj) are large and the number of atoms in the
unit cell is small. Thus, it is the largest jE�j or jEAj, remaining after the ap-
plication of all appropriate cutoffs, that are phased in direct-methods sub-
structure determinations. The triplet invariants involving these reflections
are generated, and a sufficient number of those invariants with the highest
AHK values are retained to achieve the desired invariant-to-reflection ratio
(e.g., SnB uses a default ratio of 10:1). The inability to obtain a sufficient
62 W. Cochran, Acta Crystallogr. 8, 473 (1955).
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number of accurate invariant estimates is the reason why full-structure
phasing by direct methods is possible only for the smallest proteins.

‘‘Multisolution’’ Methods and Trial Structures. Once the values for some
pairs of phases (�K and ��H�K) are known, the triplet structure invariants
can be used to generate further phases (�H) which, in turn, can be used itera-
tively to evaluate still more phases. The number of cycles of phase expansion
or refinement that must be performed depends on the size of the structure to
be determined. Older, conventional, direct-methods programs operate in
reciprocal space alone, but the SnB and SHELXD programs alternate phase
improvement in both reciprocal and real spaces within each cycle. To obtain
starting phases, a so-called multisolution or multitrial approach63 is taken in
which the reflections are each assigned many different starting values in the
hope that one or more of the resultant phase combinations will lead to a
solution. Solutions, if they occur, must be identified on the basis of some suit-
able figure of merit. Typically, a random-number generator is used to assign
initial values to all phases from the outset.64 A variant of this procedure
employed in SnB is to use the random-number generator to assign initial co-
ordinates to the atoms in the trial structures and then to obtain initial phases
from a structure-factor calculation.

The efficiency of direct methods, however, often can be improved con-
siderably by using better-than-random starting trial structures that are, in
some way, consistent with the Patterson function. In SHELXD, this is ac-
complished by computing a Patterson minimum function (PMF)65 to screen
for likely candidates. First, one presumes that the strongest general Patter-
son peaks may well correspond to a vector between two heavy atoms. For a
selected number (e.g., 100) of these vectors, the pair of atoms related by the
vector are subjected to a number of random translations (e.g., 99,999).
For each of these potential two-atom trial structures, all the symmetry-
equivalent atoms are found, the Patterson-function values corresponding
to the unique vectors between all of these atoms are calculated and sorted
in ascending order, and then the PMF scoring criterion is computed as the
mean value of the lowest (e.g., 30%) values in this list. For each two-atom
vector, the random translation with the highest PMF is retained. Next, the
two-atom trial structures are extended to N atoms by using a technique that
involves the computation of a full-symmetry Patterson superposition min-
imum function (PSMF).37 A list containing all symmetry equivalents of the
two starting atoms is generated. Then, each pixel of the PSMF map is
63 G. Germain and M. M. Woolfson, Acta Crystallogr. B 24, 91 (1968).
64 R. Baggio, M. M. Woolfson, J.-P. Declercq, and G. Germain, Acta Crystallogr. A 34, 883

(1978).
65 C. E. Nordman, Trans. Am. Crystallogr. Assoc. 2, 29 (1966).
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assigned a value equal to the PMF for all vectors in the list and a dummy
atom placed at that pixel. Finally, the N � 2 highest peaks in the PSMF
map are obtained by interpolation and sorting, and then they are added to
the trial structure. Tests using SHELXD have shown that this combination
of direct and Patterson methods produces more complete and precise solu-
tions than just using the Patterson methods alone. To make this method
applicable in space group P1, SHELXD places an extra atom at the origin
and performs random translations of the two-atom fragment.

Reciprocal-Space Phase Refinement or Expansion: Shaking. Once a set
of initial phases has been chosen, it must be refined against the set of struc-
ture invariants whose values are presumed known. So far, two optimization
methods (tangent refinement and parameter-shift reduction of the minimal
function) have proved useful for extracting phase information in this
way. Both of these optimization methods are available in both SnB
and SHELXD, but SnB uses the minimal function by default whereas
SHELXD uses the tangent formula.

The tangent formula66

tan ð�HÞ ¼
�
P
K

jEKE�H�Kj sin ð�K þ ��H�KÞP
K

jEKE�H�Kj cos ð�K þ ��H�KÞ
(2)

is the relationship used in conventional direct-methods programs to com-
pute �H given a sufficient number of pairs (�K, ��H�K) of known phases.
It is also an option within the phase-refinement portion of the dual-space
Shake-and-Bake procedure.67,68 In each cycle, SnB uses the tangent for-
mula to redetermine all the phases, a process referred to as tangent-for-
mula refinement. On the other hand, SHELXD performs a process of
tangent expansion in which, during each cycle, the phases of (typically)
the 40% highest calculated E magnitudes are held fixed while the phases
of the remaining 60% are determined by the tangent formula. The tangent
formula suffers from the disadvantage that, in space groups without trans-
lational symmetry, it is perfectly fulfilled by a false solution with all phases
equal to zero, thereby giving rise to the so-called ‘‘uranium-atom’’ solution
with one dominant peak in the corresponding Fourier synthesis. In conven-
tional direct-methods programs, the tangent formula is often modified in
various ways to include (explicitly or implicitly) information from the
so-called negative quartet or four-phase structure invariants69,70 that are
66 J. Karle and H. A. Hauptman, Acta Crystallogr. 9, 635 (1956).
67 C. M. Weeks, H. A. Hauptman, C.-S. Chang, and R. Miller, Trans. Am. Crystallogr. Assoc.

30, 153 (1994).
68 G. M. Sheldrick and R. O. Gould, Acta Crystallogr. B 51, 423 (1995).
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dependent on the smallest as well as the largest E magnitudes. Such modi-
fied tangent formulas do indeed largely overcome the problem of false
minima for small structures, but because of the dependence of quartet term
probabilities on 1/N, they are little more effective than the normal tangent
formula for large structures.

Constrained minimization of an objective function like the minimal
function71,72

Rð�Þ ¼
X
H;K

AHK cos�HK � I1ðAHKÞ=I0ðAHKÞ½ 2=
X
H;K

AHK (3)

provides an alternative approach to phase refinement or phase expansion.
R(�) is a measure of the mean-square difference between the values of the
triplets calculated using a particular set of phases and the expected prob-
abilistic values of the same triplets as given by the ratio of modified Bessel
functions [i.e., I1(AHK)/I0(AHK)]. The minimal function is expected to have
a constrained global minimum when the phases are equal to their correct
values for some choice of origin and enantiomorph. The minimal function
also can be written to include contributions from quartet invariants, al-
though their use is not as imperative as with the tangent formula because
the minimal function does not have a minimum when all phases are zero.
An algorithm known as parameter shift73 has proved to be quite powerful
and efficient as an optimization method when used within the Shake-and-
Bake context to reduce the value of the minimal function. For example, a
typical phase-refinement stage consists of three iterations or scans through
the reflection list, with each phase being shifted a maximum of two times by
90

�
in either the positive or negative direction during each iteration. The

refined value for each phase is selected, in turn, through a process that in-
volves evaluating the minimal function using the original phase and each
of its shifted values.53 The phase value that results in the lowest minimal-
function value is chosen at each step. Refined phases are used immediately
in the subsequent refinement of other phases.

Real-Space Constraints: Baking. Peak picking is a simple but powerful
way of imposing an atomicity constraint. Karle74 found that even a
relatively small, chemically sensible, fragment extracted by manual
interpretation of a small-molecule electron-density map could be expanded
69 H. Schenk, Acta Crystallogr. A 30, 477 (1974).
70 H. Hauptman, Acta Crystallogr. A 30, 822 (1974).
71 T. Debaerdemaeker and M. M. Woolfson, Acta Crystallogr. A 39, 193 (1983).
72 G. T. DeTitta, C. M. Weeks, P. Thuman, R. Miller, and H. A. Hauptman, Acta Crystallogr.

A 50, 203 (1994).
73 A. K. Bhuiya and E. Stanley, Acta Crystallogr. 16, 981 (1963).
74 J. Karle, Acta Crystallogr. B 24, 182 (1968).
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into a complete solution by transformation back to reciprocal space and then
performing additional iterations of phase refinement with the tangent
formula. Automatic real-space electron-density map interpretation in the
Shake-and-Bake procedure consists of selecting an appropriate number of
the largest peaks in each cycle to be used as an updated trial structure with-
out regard to chemical constraints other than a minimum allowed distance
between atoms (e.g., 1.0 Å for full structures and 3–3.5 Å for substructures).
If markedly unequal atoms are present, appropriate numbers of peaks
(atoms) can be weighted by the proper atomic numbers during transform-
ation back to reciprocal space in a subsequent structure-factor calculation.
Thus, a priori knowledge concerning the chemical composition of the crystal
is used, but no knowledge of constitution is required or used during peak se-
lection. It is useful to think of peak picking in this context as simply an ex-
treme form of density modification appropriate when the resolution of the
data is small compared with the distance separating the atoms. In theory,
under appropriate conditions it should be possible to substitute alternative
density-modification procedures such as low-density elimination75,76 or solv-
ent flattening,27 but no practical applications of such procedures have yet
been made. The imposition of physical constraints counteracts the tendency
of phase refinement to propagate errors or produce overly consistent phase
sets. For example, the ability to eliminate chemically impossible peaks at
special positions using a symmetry-equivalent cutoff distance (similar to
the procedure described in the Crystallography and NMR System section)
prevents the occurrence of most cases of false minima.10

In its simplest form as implemented in the SnB program, peak picking
consists of simply selecting the top N E-map peaks, where N is the number
of unique nonhydrogen atoms in the asymmetric unit. This is adequate for
small-molecule structures. It has also been shown to work well for heavy-
atom or anomalously scattering substructures where N is taken to be the
number of expected substructure sites.60,77 For larger structures or sub-
structures (e.g., N > 100), the number of peaks selected is reduced to
0.8N peaks, thereby taking into account the probable presence of some
atoms that, owing to high thermal motion or disorder, will not be visible.
An alternative approach to peak picking used in SHELXD is to begin by
selecting approximately N top peaks, but then to eliminate some of them
(typically one-third) at random. By analogy to the common practice in
macromolecular crystallography of omitting part of a structure from a
75 M. Shiono and M. M. Woolfson, Acta Crystallogr. A 48, 451 (1992).
76 L. S. Refaat and M. M. Woolfson, Acta Crystallogr. D. Biol. Crystallogr. 49, 367 (1993).
77 M. A. Turner, C.-S. Yuan, R. T. Borchardt, M. S. Hershfield, G. D. Smith, and P. L.

Howell, Nat. Struct. Biol. 5, 369 (1998).
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Fourier calculation in hopes of finding an improved position for the deleted
fragment, this version of peak picking is described as making a random
omit map. It has the potential for being a more efficient search algorithm.

Scoring Trial Structures

SnB and SHELXD compute figures of merit that allow the user to judge
the quality of a trial structure and decide whether or not it is a solution. It is
worth repeating the caution given above (see Crystallography and NMR
System). Although it is sometimes possible to give absolute values that
strongly indicate a solution, it is safer to consider relative values. A true so-
lution should have one or more figure-of-merit values that are outstanding
relative to the nonsolutions, which generally are in the majority.

Minimal Function. The minimal function itself, R(�) [Eq. (3)], is a highly
reliable figure of merit, provided that it has been calculated directly from the
constrained phases corresponding to the final peak positions.53 This figure of
merit is computed by both programs, and solutions typically have the
smallest values. The SnB graphical user interface provides an option for
checking the status of a running job by displaying a histogram of the min-
imal-function values for all trials that have been processed so far, as illus-
trated in Fig. 3 for the peak-anomalous difference data for a 30-site
selenomethionyl (SeMet) substructure.77 A clear bimodal distribution of
figure-of-merit values is a strong indication that a solution has, in fact, been
found. Confirmation that this is true for trial 913 in the example in Fig. 3 can
be obtained by inspecting a trace of the minimal-function value as a function
of refinement cycle (Fig. 4). Solutions usually show an abrupt decrease in
value over a few cycles, followed by stability at the lower value.

Crystallographic R. SnB and SHELXD compute RCRYST ¼ (
P

kEOj
�jECk)/

P
jEOj. This figure of merit, which is also highly reliable, has small

values for solutions.
PATFOM. The Patterson figure of merit, PATFOM, is the mean Pat-

terson minimum function value for a specified number of atoms. It is com-
puted by SHELXD. Although the absolute value depends on the structure
in question, solutions almost always have the largest PATFOM values.

Correlation Coefficient. The correlation coefficient42 computed in
SHELXD is defined by

CC ¼
X

wEoEc �
X
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X
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X
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Fig. 3. This bimodal histogram of minimal function (RMIN) values for 1000 trials suggests

that there are 39 solutions. RTRUE and RRANDOM are theoretical values for true and random

phase sets, respectively.53

Fig. 4. Plots of the minimal-function value over 60 cycles (a) for a solution (trial 913)

and (b) for a nonsolution (trial 914).
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with default weights w ¼ 1/[0.1 þ �2 (E)]. Solutions typically have the larg-
est values for this figure of merit. Values of 0.7 or greater when based on
all, or almost all, of the jEj data for full structures strongly indicate that a
solution has been found. Also, when computed in SHELXD for substruc-
tures using jEAj data, values greater than 0.4 typically indicate a solution.
SnB also computes a correlation coefficient, but this criterion has not been
found to be reliable for substructures when based on the limited number of
jE�j difference data normally used.
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Site Validation

Direct-methods programs provide as output a file of peak positions, for
one or more of the best trials, sorted in descending order according to the
electron density at those positions on the Fourier map. For an N-site sub-
structure, SnB provides 1.5N peaks for each trial. The user must then
decide which, and how many, of these peaks correspond to actual atoms.
The first N peaks have the highest probability of being correct, and in many
cases this simple guideline is adequate. Sometimes, there will be a signifi-
cant break in the density values between true and false peaks, and, when
this occurs in the expected place, it is additional confirmation. In other
cases, a conservative approach is to accept the 0.8N to 0.9N top peaks, com-
pute a difference Fourier map, and compare the peaks on this map to the
original direct-methods map.

Crossword Tables. The Patterson superposition function is the basis of
the crossword table,78,79 introduced in SHELXS-8680 and available also in
SHELXD, that provides another way to assess which of the heavy-atom
sites are correct and, in some cases, to recognize the presence of noncrys-
tallographic symmetry. Each entry in the table links the potential atom
forming the row with the potential atom forming the column. For each pair
of atoms, the top number is the minimum distance between them, taking
the space-group symmetry into account. The bottom number is the Patter-
son minimum function (PMF) value calculated from all vectors between
the two atoms, also taking symmetry into account. The first vertical column
is based on the self-vectors (i.e., the vectors between one atom and its sym-
metry equivalents). In general, wrong sites can be recognized by the pres-
ence in the table of several zero PMF values (negative values are replaced
by zero). Table IV shows the crossword table for the CuK
 anomalous �F
data for a HiPIP with two Fe4S4 clusters in the asymmetric unit.81 It is easy
to find the two clusters (atoms 1–4 and 5–8) by looking for Fe� � �Fe dis-
tances of approximately 2.8 Å, and the PMF values for the eight correct
atoms are, in general, higher than those involving spurious atoms despite
the weakness of the anomalous signal.

Comparison of Trials. When trying to decide which peaks are correct, it
is also helpful to compare the peak positions from two or more solutions.
78 G. M. Sheldrick, Z. Dauter, K. S. Wilson, and L. C. Sieker, Acta Crystallogr. D. Biol.

Crystallogr. 49, 18 (1993).
79 G. M. Sheldrick, in ‘‘Direct Methods for Solving Macromolecular Structures’’ (S. Fortier,

ed.), p. 131. Kluwer Academic, Dordrecht, The Netherlands, 1998.
80 G. M. Sheldrick, J. Mol. Struct. 130, 9 (1985).
81 I. Rayment, G. Wesenberg, T. E. Meyer, M. A. Cusanovich, and H. M. Holden, J. Mol.

Biol. 228, 672 (1992).



TABLE IV

Crossword Table for Location of Eight Iron Atoms

Peak x y z Self Cross-vectors

99.9 0.9201 0.0784 0.1133 27.7

26.6

88.4 0.9719 0.1047 0.1356 27.4 2.4

39.7 25.1

85.5 0.9043 0.1258 0.0884 27.7 2.6 3.0

27.3 23.3 5.5

82.7 0.9546 0.0950 0.0503 26.7 2.3 2.5 2.7

15.2 28.4 43.5 26.4

81.1 0.3542 0.5285 0.2615 31.2 14.6 16.6 14.4 14.6

20.9 41.4 14.8 9.5 21.5

80.5 0.4316 0.5144 0.2451 30.0 16.5 18.7 16.4 16.8 3.0

25.5 24.6 20.0 21.2 8.9 0.0

80.4 0.3942 0.5575 0.1995 29.6 14.4 16.4 13.9 14.6 2.7 2.9

0.0 31.4 7.7 22.6 33.8 26.6 19.4

73.9 0.3920 0.5023 0.1694 29.1 14.3 16.6 14.5 14.8 3.2 2.6 3.0

26.1 22.3 16.0 24.5 18.3 10.9 0.0 17.5

63.8 0.4025 0.4641 0.2218 29.9 16.1 18.4 16.4 16.5 4.0 2.9 5.0

18.4 17.0 13.1 0.0 4.5 0.0 5.4 0.0

58.9 0.9655 0.0517 0.0945 26.9 2.2 3.0 4.5 2.6 15.2 17.3 15.4

45.9 7.3 15.8 7.8 5.3 0.0 0.0 6.1
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Peaks recurring in several solutions are more likely to be real. However, in
order to do this comparison, one must take into account the fact that differ-
ent solutions may have different origins and/or enantiomorphs. A stand-
alone program for doing this is available,82 and the capability of making
such comparisons automatically for all space groups will be available in
future versions of SnB and SHELXD. The usefulness of peak correlation
is illustrated by an example for a 30-site SeMet substructure.61,77 Table V
presents the relative rankings of peaks, from nine other trials, that corres-
pond to peaks 29–45 of trial 149, which had the lowest minimal-function
value for the peak-wavelength difference data for crystal 1. The top 29
peaks for trial 149 were correct selenium positions, but peak 30 (the Nth
peak) was spurious. Peak 33 of trial 149 was found to have a match on every
other map, and indeed, it did correspond to the final selenium site. It
appears that, in general, the same noise is not reproduced on different maps,
especially maps originating from different data sets. Thus, peak correlation
can be used to identify correct peaks ranking below the Nth peak.
82 G. D. Smith, J. Appl. Crystallogr. 35, 368 (2002).



TABLE V

Trial Comparison for 30-Site Substructure

Crystal: 1 1 1 1 1 1 1 2 2 2

Wavelengtha: PK PK PK PK PK IP HR IP PK HR

Trial no.: 149 31 158 165 176 104 23 476 93 86

Peak rank: 29 22 29 29 29 21 38 29 28

31 34

33 42 30 30 35 24 22 34 30 30

34 33 42

37 43

39 40 38

40 42 42

45 40

a The wavelengths are peak (PK), inflection point (IP), and high-energy remote (HR).
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Enantiomorph Determination

Because all publicly distributed direct-methods programs, including SnB
and SHELXD, work with only jEj, jE�j, or jEAj values, they have no way to
determine the proper hand. Both enantiomorphs are found with equal fre-
quency among the solutions. If a structure crystallizes in an enantiomorphic
space group, either of the space groups may be used during the direct-
methods step, but chances are 50% that, at a later stage, the coordinates will
have to be inverted and the space group changed to its enantiomorph in
order to produce an interpretable protein map. A direct-methods formalism
has been proposed83 that uses both jEþj and jE–j and, in theory, should
make it possible to produce only solutions with the proper hand. However,
this theory has never been successfully applied to actual experimental data.
Similarly, it should be noted that solutions occur at all permitted origin pos-
itions with equal frequency. This means that, in the MIR case, cross-phasing
is necessary to ensure that all derivatives are referred to the same origin.
A direct-methods formalism84 exists that should automatically do this, but
it has never been implemented in a distributed program.

Substructure Refinement

Fourier refinement, often called E-Fourier recycling, has been used for
many years in direct-methods programs to improve the quality and com-
pleteness of solutions.85 Additional refinement cycles are performed in real
83 H. Hauptman, Acta Crystallogr. A 38, 632 (1982).
84 S. Fortier, C. M. Weeks, and H. Hauptman, Acta Crystallogr. A 40, 646 (1984).



70 phases [3]
space alone, using many more reflections than is possible in the direct-
methods steps that are dependent on the accuracy of triplet-invariant
relationships. In SHELXD, the final model can be improved further by
occupancy or isotropic displacement parameter (Biso) refinement for the
individual atoms,86 followed by calculation of the Sim87- or sigma-A88-
weighted map. The development of a common interface89 for SnB and
the PHASES package90 permits coordinates determined by direct methods
to be passed easily for conventional substructure phase refinement and pro-
tein phasing, and for SHELXD this facility is provided by a program
SHELXE.90a
Collaborative Computational Project Number 4

Unlike many other packages, the Collaborative Computational Project
Number 4 (CCP4) suite is a set of separate programs that communicate via
standard data files rather than having all operations integrated into one
huge program. This has some disadvantages in that it is less easy for pro-
grams to make decisions about what operation to do next even though
communication is now being coordinated through a graphical user inter-
face (CCP4i). The advantage of loose organization is that it is easy to add
new programs or to modify existing ones without upsetting other parts of
the suite.

Data Preparation

The CCP4 suite provides a number of programs (i.e., SCALA,91

TRUNCATE,92 and SCALEIT) that are useful in preparing data for
experimental phasing. SCALA treats scaling and merging as different
operations, thereby allowing an analysis of data quality before merging.
For isomorphous replacement studies, the native data can be used as
the reference set, and all of the derivatives scaled to it. This provides
85 G. M. Sheldrick, in ‘‘Crystallographic Computing’’ (D. Sayre, ed.), p. 506. Clarendon Press,

Oxford, 1982.
86 I. Usón, G. M. Sheldrick, E. de la Fortelle, G. Bricogne, S. di Marco, J. P. Priestle, M. G.

Grütter, and P. R. E. Mittl, Struct. Fold. Des. 7, 55 (1999).
87 G. A. Sim, Acta Crystallogr. 12, 813 (1959).
88 R. J. Read, Acta Crystallogr. A 42, 140 (1986).
89 C. M. Weeks, R. H. Blessing, R. Miller, R. Mungee, S. A. Potter, J. Rappleye, G. D. Smith,

H. Xu, and W. Furey, Z. Kristallogr. 217, 686 (2002).
90 W. Furey and S. Swaminathan, Methods Enzymol. 277, 590.
90a G. M. Sheldrick, Z. Kristallogr. 217, 644 (2002).
91 P. R. Evans, in ‘‘Recent Advances in Phasing.’’ Proceedings of CCP4 Study Weekend (1997).
92 G. S. French and K. S. Wilson, Acta Crystallogr. A 34, 517 (1978).
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well-parameterized ‘‘local’’ scales. For MAD data, all sets are scaled in one
pass, gross outliers are rejected (e.g., any measurement four to five times
greater than the mean), and then each data set is merged separately to give
a weighted mean for each reflection. A detailed analysis of the data is pro-
vided in a graphical form. Useful information is given on the scale factors
themselves (which can often pinpoint rogue images), on the Rmerge values,
and on the correlation coefficients between wavelengths for MAD data
(coefficients <0.4 suggest a resolution cutoff; see discussion of Table III).

Various scaling models related to the experiment can be used. The scale
factor is a function of the primary beam direction, treated either as a
smooth function of the rotation angle or as an image-by-image correction.
In addition, the scale may be a function of the secondary beam direction,
acting principally as an absorption correction, expanded either as spherical
harmonics or as an interpolated three-dimensional function of the rotation
angle and the spatial coordinates of the measured spot on the detector. The
secondary beam correction is related to the absorption anisotropy correc-
tion described by Blessing,93 and the interpolated three-dimensional cor-
rection is similar to that described by Kabsch.94 Optimum scaling
depends a great deal on exactly how the data were collected, and it is not
possible to lay down rules for all cases.

TRUNCATE can convert merged intensities to amplitudes in two
ways. The simplest way is just to take the square root of the intensities, set-
ting any negative values to zero. Alternatively, a best estimate of F can be
calculated from I, �(I), and the distribution of intensities in resolution
shells. This has the effect of forcing all negative observations to be positive
and of inflating the weakest reflections (<�3�) because an observation sig-
nificantly smaller than the average intensity is likely to be underestimated.
TRUNCATE also analyzes the data to verify that the expected distribu-
tions are satisfied. It generates a Wilson plot that should be linear for the
resolution shells greater than 4 Å, moments for the intensities (which are
excellent indicators of twinning), the cumulative intensity distribution (an-
other clue to both twinning and sometimes noncrystallographic symmetry),
and an analysis of anisotrophy. All these criteria need to be examined care-
fully before using the data.

SCALEIT puts all data sets on the same relative scale and uses normal
probability plots95 to test whether the differences between them are signifi-
cant. First, the reflections in each resolution bin are sorted according to the
value of �(real) ¼ (FP�FPH)/[�2(FP) þ �2(FPH)]1/2, where FPH and �(FPH)
93 R. H. Blessing, Acta Crystallogr. A 51, 33 (1995).
94 W. Kabsch, J. Appl. Crystallogr. 21, 916 (1988).
95 P. L. Howell and G. D. Smith, J. Appl. Crystallogr. 25, 81 (1992).
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are the scaled values for the derivative. For each reflection, the correspond-
ing �(expected) is then calculated assuming a normal distribution, and
�(real) is plotted against �(expected). If the native and scaled derivative
data sets are essentially identical (in statistical parlance, they represent
two samplings of the same population), the normal probability plot will
be linear with a slope of unity and an intercept of zero. The size of the sub-
structure contribution can be gauged by the deviation of the slope and
intercept from these values, and the variation with resolution indicates to
what resolution the heavy-atom contribution extends. A similar analysis
can be applied to MAD data to estimate the significance of the dispersive
and anomalous differences.

Heavy-Atom Searching and Phasing

The CCP4 suite includes two direct-methods programs that can be used
to locate heavy-atom sites using a variety of difference structure-factor co-
efficients. The simplest approach is to use the best SAD or SIR difference.
Program REVISE96 can be used to estimate FA or FM, the full contribution
from the substructure. Normalized difference magnitudes, jE�j, are com-
puted using program ECALC.

RANTAN. RANTAN7 is a classic direct-methods program that per-
forms reciprocal-space phase refinement. The program determines reflec-
tions for fixing the origin and enantiomorph, and then assigns a set of
random phases with default weights of 0.25 to a starting set of large jEj
values. The phases are refined by the tangent formula and expanded to in-
clude the whole set of large E magnitudes. Up to five sets of refined phases
and weights with the best combined figures of merit are output.

ACORN. ACORN8 is a fast ab initio procedure for solving structures
when the data are sufficient to separate atomic sites in the E maps. In the
case of substructures, 4-Å data (sometimes even lower) will usually suffice.
The initial phase sets are generated from the atomic coordinates of a puta-
tive structural fragment. The fragment can be made up in various ways. In
simple cases, such as metalloproteins or heavy-atom substructures, it is suf-
ficient to generate many trial structures starting from a single randomly
placed atom. The reflections are divided into three groups (strong,
medium, and weak) according to their jEj values. Correlation coefficients
(CC; see Dual-Space Direct Methods, above), between the observed and
calculated E values for each class are used in different ways throughout
the procedure. All reflections are used to select likely trial sets. The strong
and weak reflections are used in the phase refinement, and the CC for the
96 H.-F. Fan, M. M. Woolfson, and J.-X. Yao, Proc. R. Soc. Lond. A 442, 13 (1993).
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medium reflections provides a simple criterion of correctness for a phase
set. The starting phase sets are refined primarily using dynamic density
modification, supplemented by Patterson superposition and real-space
Sayre equation refinement.
Dynamic density modification (DDM) eliminates the negative
densities and truncates the highest density. For the first cycle, this
truncation will occur at the sites of the starting coordinate(s).
During later cycles, the density is modified according to a formula
based on the standard deviation of the map and the cycle number.

Patterson superposition generates a semisharpened Patterson sum-
function map from the starting fragment.

Sayre equation refinement is carried out in real space, using fast
Fourier transforms instead of working directly with the phase
relationships. The equations are identical, but the real-space
formulation is much faster.
ACORN first uses DDM for many cycles. Then, if no solution can be
found, a few cycles of Sayre equation refinement are performed. This may
modify the phase set sufficiently to allow the DDM algorithm to function
more effectively.
Scoring Trial Structures

ACORN will stop automatically if the value of CC for the medium E
values becomes greater than a preset value during DDM, thereby indicat-
ing that a probable solution has been found. This CC value needs to be
adjusted according to the data quality, particularly when searching for
anomalous scatterers using SAD or MAD data. Another criterion for suc-
cess, similar to that used in SnB, is that the same solution is found more
than once. In CCP4, this is checked using the phased translation function,
a function that detects similar solutions after taking both hands (enantio-
morphs) and alternative origins into account. The third, and most signifi-
cant, criterion is whether the trial solution gives the appropriate number
of sites with more-or-less appropriate peak heights.
Site Validation, Enantiomorph Determination, and
Substructure Refinement

Within CCP4, the program MLPHARE is used to refine the substruc-
ture sites and to generate protein phases. Initially, it is usually sufficient
to refine putative sites against the centric data or some other subset. Typic-
ally, the refinement is enormously overdetermined (i.e., there are many
more observations than parameters), and the refined phases are sufficiently
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good to allow the cross-checking of sites and the choice of hand. Numerical
criteria are the figure of merit and phasing power, both of which are useful
criteria for assessing whether a new site is improving the solution or not.
However, it is difficult to define an absolute required value for either of
these quantities. Another useful criterion is the extended Cullis R factor,
defined as the hLack of closurei/hIsomorphous differencei. (The isomorph-
ous difference is jFPH�FPj; lack of closure is jFPH�jFP þ FHk, where jFP þ
FHj is a vector sum of the calculated FH and FP using the current best pro-
tein phases.) This is the most reliable signal for a usable derivative. For
centric data, values less than 0.6 are excellent, and values greater than 0.9
indicate that something is not right. If a new site does not reduce the
existing Cullis R value, it is probably not correct.
Applications

This section contains a discussion of applications of the programs de-
scribed above to substructures that can be regarded in some way as being
at the cutting edge. These applications include large selenomethionine de-
rivatives, substructures phased by weak anomalous signals, and substruc-
tures created by soaking protein crystals in cryobuffers containing
concentrated halide salts. The tabulations presented below should not be
regarded as a complete survey of the literature. The intention here is
to focus on how to use the programs effectively in these challenging
situations.

Large Substructures

Improvements in data collection instruments and methods have permit-
ted macromolecular diffraction data, especially small anomalous-scattering
differences, to be measured much more accurately. At the same time, the
use of genetic engineering to replace methionine by selenomethionine97

(SeMet) has provided a convenient means for inserting many anomalous
scatterers into large proteins. In the last 3 or 4 years, this has resulted in
a dramatic increase in the size of the substructures that have challenged
phasing methods and the programs that implement them. So far, as
shown in Table VI, the programs described above (especially those that
employ direct methods) have met this challenge well, and the upper size
of substructures manageable with current software has clearly not been
reached yet.
97 W. A. Hendrickson, J. R. Horton, and D. M. LeMaster, EMBO J. 9, 1665 (1990).
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In general, recognizing when a solution has occurred has not been a
problem, but selecting all the correct sites has been difficult in a few cases
(e.g., carrier protein reductase and lactonizing enzyme) and was aided by a
careful consideration of the noncrystallographic symmetry. On the other
hand, some of the largest studies have proceeded smoothly once a solution
was identified. For example, in the case of the bifunctional enzyme
DmpFG, the 86 top selenium sites found by SnB were put into the AD-
DSOLVE component of the SOLVE package for refinement and to search
for additional sites. ADDSOLVE found 14 more sites (total of 100 of 108
Se), and it was followed by solvent flattening using RESOLVE. Then, two
rounds of ARP/wARP98 tracing, extending the resolution to 1.7 Å for the
native data, found 2330 residues (88%) automatically.

KPHMT. The 2.8-Å, peak-wavelength, anomalous data set (136,609
unique reflections) for the largest SeMet substructure, ketopantoate
hydroxymethyltransferase (KPHMT) from Escherichia coli, was highly re-
dundant (average multiplicity per Friedel mate, 10.6), complete (all data,
99.9%; anomalous completeness, 99.8%), accurate (Rsym ¼ 0.120; Ranom

¼ 0.073), and had a good signal-to-noise ratio [I/�(I) ¼ 25.6 overall;
I/�(I) ¼ 6.0 in the highest resolution shell]. It is assumed that the high qual-
ity of the data was important for a successful outcome. Although the
KPHMT substructure was originally solved by SnB, it can also be solved
by SHELXD using the peak data alone. In fact, the use of Patterson-based
trial structures in SHELXD improves the success rate (percentage of trials
going to solution) by perhaps an order of magnitude, resulting in one solu-
tion every 14 h on an 800-MHz Athlon PC when the full 2.8-Å data set is
used. On the other hand, an experimental version of SnB that uses the sine-
enhanced minimal function99 also gives a significantly improved success
rate relative to the distributed program (SnB version 2.1).

The best SHELXD solution (2.8-Å data, 0.75-Å Fourier map grid) for
KPHMT had 145 of the top 160 peaks, and 149 of the top 200 peaks, within
2 Å of the methionine sulfurs in the native structure. These matches could
be improved to 152 and 157 peaks, respectively, by combining the phases
for the best 16 solutions. In this case, 97 of the peaks were actually within
0.5 Å of the sulfur positions. In comparison, the original SnB solution (3.5-
Å data, 2-Å grid) gave corresponding matches of 122 and 127 peaks. The
KPHMT structure consists of two independent decamers with N-terminal
methionines that have never been found. The strategy followed by von
Delft57 in solving the structure was to take the top 120 SnB peaks
98 A. Perrakis, R. Morris, and V. S. Lamzin, Nat. Struct. Biol. 6, 458 (1999).
99 H. Xu, H. A. Hauptman, and C. M. Weeks, Acta Crystallogr. D. Biol. Crystallogr. 58, 90

(2002).



TABLE VI

Twenty Selenomethionine Substructures with 40 or More Sites

Protein

Space

group d (Å)

kDa/

asymmetric

unit

Program

useda
Actual

sites

Sites

found

Cyanaseb P1 3.0 170 SHELXD 40 40

Pyruvate

dehydrogenase: E1c
P21 3.5 200 SnB 40 40

EphB2 receptor

SAM domaind
P41 1.95 78 SnB 48 ?

Arylamine

N-acetyltransferasee
P21212 4.0 240 SnB 48 48

MutS repair proteinf P212121 3.0 230 SnB 48 32

Target protein MP883g P212121 3.0 180 SHELXD 50 50

Confidential P212121 2.4 183 SOLVE 52 52

d-Hydantoinaseh C2221 3.0 300 SOLVE 54 54

Confidential P21 4.0 61 SOLVE 56 56

Cap-binding complexi P212121 3.0 300 SHELXD 57 57

Nicotinamide

nucleotide

transhydrogenasej

P21 3.0 160 SHELXD 59 58

Tryparedoxin

peroxidasek
P21 3.2 230 SOLVE 60 46

Gastroenteritis viral

proteasel
P21 2.9 198 SnB 60 37

2-Aminoethylphosphonate

transaminasem
P21 2.55 270 SHELXD 66 66

Human HMG-CoA

reductasen
P21 2.6 200 SnB 68 45

Acyl carrier protein

reductaseo
P21 3.0 204 SnB 69 31

d-Mannoheptose

6-epimerasep
P21 3.0 370 SnB 70 65

Muconate lactonizing

enzymeq
P212121 4.0 112 SnB 80 57

Pseudomonas sp. DmpFGr P212121 2.2 280 SnB 108 86

Ketopantoate

hydroxymethyltransferases
P21 3.5 567 SnB 160 120

a Program used for the original solution. SnB applications used peak-wavelength

anomalous jE�j data. SOLVE and SHELXD applications used MAD jEAj data.
b M. A. Walsh, Z. Otwinowski, A. Perrakis, P. M. Anderson, and A. Joachimiak, Struct.

Fold. Des. 8, 505 (2000).
c P. Arjunan, N. Nemeria, A. Brunskill, K. Chandrasekhar, M. Sax, Y. Yan, F. Jordan,

J. R. Guest, and W. Furey, Biochemistry 41, 5213 (2002).
d C. D. Thanos, K. E. Goodwill, and J. U. Bowie, Science 283, 833 (1999).

(continued)

76 phases [3]



[3] automatic solution of heavy-atom substructures 77
(two-thirds of the originally expected 180 sites), refine them with
SHARP,20 and locate the other 40 sites using difference Fouriers. This
strategy resulted in a map that could be interpreted easily.

AEP Transaminase. Table VII compares the application of several pro-
grams to the data for the 66-site SeMet substructure of 2-aminoethylphos-
phonate (AEP) transaminase. The data are of high quality, but the
selenium absorption edge was missed because of problems with the beam-
line at the time of data collection. As a result, what was thought to be the
inflection-point data actually had the strongest anomalous signal. Despite
this complication, all the programs tested could solve the structure al-
though there is variation with respect to the data set that gives the highest
success rate. The superiority of the combined (direct methods and
Patterson) approach that uses Patterson-based seeds to generate the
starting structures is apparent. Because CNS uses a dead-end criterion to
terminate the Patterson search and, typically, the search is abandoned early
when the anomalous signal is poor, the average time per trial will usually
be less for the less successful runs. The CCP4 program ACORN runs trials
in an order dependent on the scoring for a single randomly positioned
e J. C. Sinclair, J. Sandy, R. Delgoda, E. Sim, and M. E. Noble, Nat. Struct. Biol. 7, 560

(2000).
f M. H. Lamers, A. Perrakis, J. H. Enzlin, H. H. K. Winterwerp, N. deWind, and T. K.

Sixma, Nature 407, 711 (2000).
g Berkeley Structural Genomics Center, personal communication.
h J. Abendroth, K. Niefind and D. Schomburg, J. Mol. Biol. 320, 143 (2002).
i C. Mazza, M. Ohno, A. Segref, I. W. Mattaj, and S. Cusack, Mol. Cell 8, 383 (2001).
j P. A. Buckley, J. B. Jackson, T. R. Schneider, S. A. White, D. W. Rice, and P. J. Baker,

Struct. Fold. Des. 8, 809 (2000).
k M. S. Alphey, C. S. Bond, E. Tetaud, A. H. Fairlamb, and W. N. Hunter, J. Mol. Biol.

300, 903 (2000).
l K. Anand, G. J. Palm, J. R. Mesters, S. G. Siddell, J. Ziebuhn, and R. Hilgenfeld, Embo.

J. 21, 3213 (2002).
m C. C. H. Chen, A. Kim, H. Zhang, A. J. Howard, G. Sheldrick, D. Dunaway-Mariano,

and O. Herzberg, Biochemistry 41, 13162 (2002).
n E. S. Istvan, M. Palnitkar, S. K. Buchanan, and J. Deisenhofer, EMBO J. 19, 819 (2000).
o A. C. Price, Y.-M. Zhang, C. O. Rock, and S. W. White, Biochemistry 40, 12772 (2001).
p A. M. Deacon, Y. S. Ni, W. G. Coleman, Jr., and S. E. Ealick, Struct. Fold. Des. 8, 453

(2000).
q M. Merckel, T. Kajander, A. M. Deacon, A. Thompson, J. G. Grossman, N. Kalkkinen,

and A. Goldman, Acta Crystallogr. D. Biol. Crystallogr. 58, 727 (2002).
r B. A. Manjasetty, J. Powlowski, and A. Vrielink, Proc. Natl. Acad. Sci. USA 100, 6992

(2003)
s F. von Delft, T. Inoue, S. A. Saldanha, H. H. Ottenhof, F. Schmitzbergera, L. M. Birch,

V. Dhanaraj, M. Witty, A. G. Smith, T. L. Blundell, and C. Abell, Struct. 11, 985 (2003).



TABLE VII

Success Rates for 2-Aminoethylphosphonate Transaminase Data Sets
a

Program: CNS SnB SHELXDb SHELXDc ACORN

Trials run: 100 1000 1000 1000 Variable

Time per triald: 600e 250 90 40 —

Success rate

IP 7% 12.1% 15.0% 42.4% 1 of 17

PK 3 4.1 9.3 38.0 1 of 81

HR 0 0.2 2.5 14.8 0

IP/HR — 16.0 6.8 12.7 —

PK/HR — 0.1 0.0 0.0 —

IP þ IP/HR 13 — 13.7 65.3 —

FA 17 3.8f 6.1 56.4 1 of 26

a The data sets are as follows: inflection point (IP), peak (PK), high-energy remote (HR),

IP and HR dispersive differences (IP/HR), PK and HR dispersive differences (PK/HR),

combined IP and IP/HR, and FA structure factors computed using XPREP.39

b Random-atom trial structures.
c Patterson-seeded trial structures.
d Seconds on a 300-MHz SGI R12000.
e Average time per trial for the FA data set (estimated from a run on a 833-MHz Compaq

Alpha).
f Optimum parameters differ from the default values used for single-wavelength

differences.
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starting atom. ACORN terminates as soon as it finds what it regards as
a solution.

SOLVE builds trial structures in ways that make an exact comparison
with the other programs difficult. The inflection-point data for AEP
transaminase were input to SOLVE, and the automatic protocol for SAD
data (specifying a maximum number of 66 sites) was used. SOLVE found
66 sites in 7 h on a 500-MHz Compaq Alpha (�10 h on a 300-MHz SGI
R12000), and 65 of these matched the 66 known Se sites with distances in
the range of 0.06–0.75 Å. RESOLVE then took the 66 sites and found all
six NCS operators automatically, carried out NCS averaging and solvent
flattening, and autobuilt a model including side chains for 78% of the
2232 residues.

Weak Anomalous Signals

It has long been the dream of crystallographers to use the resonant scat-
tering from naturally occurring elements, in particular sulfur, to phase pro-
tein structures. However, the K absorption edges of sulfur and other,
smaller atoms such as phosphorus and chlorine correspond to wavelengths
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longer than 4 Å, well beyond the tunable range (0.8–2.0 Å) of most
synchrotrons. Furthermore, the severe absorption and radiation-damage
problems encountered at such long wavelengths are likely to be insur-
mountable in most cases. It is fortunate, then, that elements such as sulfur
retain some anomalous scattering effect even at wavelengths far removed
from their absorption edges. It has been 20 years since Hendrickson and
Teeter pioneered the use of sulfur anomalous diffraction to solve the struc-
ture of a small protein, crambin.100 Similar applications have been slow to
follow, principally because of the difficulty in measuring the small anomal-
ous signal with sufficient accuracy. However, as the applications summar-
ized in Table VIII attest, the ways and means are now being found to
conduct the necessary experiments successfully. Tetragonal hen egg-white
lysozyme101 and the metalloprotease thermolysin102 are previously known
test structures used to demonstrate feasibility. Obelin was the first de novo
structure determined by sulfur anomalous-scattering data and solvent flat-
tening with the latter step carried out at 3.0 Å using the iterative single-
wavelength anomalous scattering method first proposed by Wang.27 In
the second de novo determination, that of the C1 subunit of 
-crustacyanin,
the top six peaks corresponded to a single member of each of the six disul-
fide moieties present in the asymmetric unit. In some cases, it was neces-
sary to deviate from the default parameters used for the determination of
substructures with stronger signals (e.g., use larger phase-to-atom ratios or
decrease sigma cutoffs). (See also [5] in this volume103).

Two facts stand out regarding the examples in Table VIII. First, X-rays
in the wavelength range of 1.5 to �2.0 Å are chosen to reach a workable
compromise that minimizes absorption and radiation-damage effects while
maintaining some anomalous signal. (At � ¼ 1.54 Å, the �f 00 values are 0.56
electrons for sulfur and 0.70 for chlorine.) Second, highly redundant data
are measured in an attempt to maximize accuracy. For example, in the lyso-
zyme study by Weiss,104 no solutions were obtained when the data were
truncated such that the redundancy factor was �13 or less. One solution
out of 5000 trials was obtained with a redundancy of �16, but this increased
to 40 per 5000 trials (0.8% success) when the redundancy was �25.
100 W. A. Hendrickson and M. M. Teeter, Nature 290, 107 (1981).
101 C. C. F. Blake, G. A. Mair, A. C. T. North, D. C. Phillips, and V. R. Sarma, Proc. R. Soc. B

167, 365 (1967).
102 B. W. Matthews, J. N. Jansonius, P. M. Colman, B. P. Schoenborn, and D. Duporque, Nat.

New Biol. 238, 37 (1972).
103 R. A. P. Nagem, I. Polikarpov, and Z. Dauter, Methods Enzymol. 374, [5], 2003 (this

volume).
104 M. S. Weiss, J. Appl. Crystallogr. 34, 130 (2001).



TABLE VIII

Substructure Determinations Using Weak Anomalous Signals

Protein

Wavelength

used (Å) Redundancy

Space

group d (Å)

kDa/asymmetric

unit

Program

used

Actual

sites

Sites

found

Lysozymea 1.54 �23 P43212 1.8 14 SHELXD S10Cl8 17

Lysozymeb 1.54 >16 P43212 1.63 14 SnB S10Cl8 ?

Thermolysinc 1.5–2.1 35–40 P6122 1.83 35 SnB ZnCa5S3 15d

Obeline 1.74 6 P62 3.5 22 SOLVE S8Cl 9


-Crustacyaninf 1.77 11 P212121 2.6 40 SnB S12 6(S–S)

a Z. Dauter, M. Dauter, E. de la Fortelle, G. Bricogne, and G. M. Sheldrick, J. Mol. Biol. 289, 83 (1999).
b M. S. Weiss, J. Appl. Crystallogr. 34, 130 (2001).
c M. S. Weiss, T. Sicker, and R. Hilgenfeld, Structure 9, 771 (2001).
d Selected for semiautomated refinement using MLPHARE,6 DM,6 and ARP/wARP.98

e Z.-J. Liu, E. S. Vysotski, C.-J. Chen, J. P. Rose, J. Lee, and B.-C. Wang, Protein Sci. 9, 2085 (2000).
f E. J. Gordon, G. A. Leonard, S. McSweeney, and P. F. Zagalsky, Acta Crystallogr. D Biol. Crystallogr. 57, 1230 (2001).
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Short Halide Soaks

Pioneering work has shown that the phasing power of the chloride
anions present in tetragonal lysozyme can be exploited further by substitut-
ing their higher homologs bromine and iodine, either by replacing the NaCl
in the crystallization buffer by NaBr105 or by a quick soak (less than 1 min)
of crystals in a cryobuffer containing concentrated (e.g., 0.25–1.0 M) halide
salt.106 The latter method appears to be generally applicable, and it leads to
incorporation of anomalous scatterers into the ordered solvent regions
around protein molecules.106,107 The bromine K absorption edge at 0.92
Å can be employed for MAD experiments, and either bromine or iodine
can be used in the SAD or SIRAS approach. In practice, the use of a single,
near-remote wavelength has been used effectively to solve structures of
bromine-soaked crystals. Prolonging the soak time beyond about 20 s does
not seem to lead to greater incorporation of halide ions, but a higher con-
centration of salt leads to more sites with higher occupancies.

Table IX contains a listing of some previously unknown protein struc-
tures determined with the aid of halide cryosoaks. Direct methods were
used to locate the halide substructures. The primary difference between
these applications and those described in the previous sections is that the
total number of sites to be found was uncertain. (Fortunately, the formula
�FANOM/F ¼ 21/2 � [(f 00 � NA

1/2)/(6.7 � NP
1/2)], where NA and NP are the

numbers of anomalously scattering and protein atoms, respectively, gives
an indication of the equivalent number of fully occupied anomalous sites
when applied to the low-resolution data.107 It appears, however, that this
uncertainty has not been a significant problem, and the number of sites
selected from the direct-methods map can be arbitrary. There is no sharp
boundary between the strong, highly occupied sites and noise. In general,
it is a good idea to underestimate the number of sites initially so that figures
of merit do not become ‘‘diluted’’ by the inclusion of incorrect sites.
Additional sites can be located easily using appropriate residual maps.
Obtaining the Programs

Detailed information about each of the programs described in this
chapter, including instructions for downloading, can be obtained from their
respective Web sites (Table X).
105 Z. Dauter and M. Dauter, J. Mol. Biol. 289, 93 (1999).
106 Z. Dauter, M. Dauter, and K. R. Rajashankar, Acta Crystallogr. D. Biol. Crystallogr. 56,

232 (2000).
107 Z. Dauter and M. Dauter, Structure 9, R21 (2001).



TABLE IX

Substructure Determinations Using Halide Soaks

Protein Salt

concentration Soak time

Space

group d (Å)

kDa/asymmetric

unit

Program

used Sites used Total sites

�-Defensin-2a 0.25 M KBrb 60 P21212 ? 16 SHELXS 9 ?

Yeast YKG9c 0.5 M NaBr 45 P43212 2.8 36 SnBd 7 ?

PCPe 1.0 M NaBr 30 P62 1.8 37 SHELXD 9 22

Thioesterase 1f 1.0 M NaBr 20 P21 1.8 56 SnB 7 40

a D. M. Hoover, K. R. Rajashankar, R. Blumenthal, A. Puri, J. J. Oppenheim, O. Chertov, and J. Lubkowski, J. Biol. Chem. 275, 32911

(2000).
b 0.25 M KI also used.
c Y.-S. J. Ho, L. M. Burden, and J. H. Hurley, EMBO J. 19, 5288 (2000).
d SHELXS also used.
e Z. Dauter, M. Li, and A. Wlodawer, Acta Crystallogr. D Biol. Crystallogr. 57, 239 (2001).
f Y. Devedjev, Z. Dauter, S. R. Kuznetsov, T. L. Z. Jones, and Z. S. Derewenda, Struct. Fold. Des. 8, 1137 (2000).
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TABLE X

Software Web Sites for Substructure Determination

Program Web site

SOLVE http://www.solve.lanl.gov

CNS http://cns.csb.yale.edu

SnB http://www.hwi.buffalo.edu/SnB/

SHELXD http://shelx.uni-ac.gwdg.de/ SHELX/

CCP4 http://www.ccp4.ac.uk

[4] xenon and krypton as heavy atoms 83
The various sites feature a variety of instructional material. For
example, the CNS distribution contains Web-based tutorials describing
the steps required for MIR, MAD, and SAD phasing. The SnB site features
a short tutorial on direct methods. Most of these programs are available at
no cost to nonprofit organizations.
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[4] Use of Noble Gases Xenon and Krypton as Heavy
Atoms in Protein Structure Determination

By Marc Schiltz, Roger Fourme, and Thierry Prangé

Introduction

Xenon and krypton derivatives of proteins can be obtained by
subjecting a native protein crystal to a xenon or krypton gas atmosphere
pressurized in the range of 1–100 bar.1 The noble gas atoms are able to dif-
fuse rapidly toward potential interaction sites in proteins via the solvent
channels that are always present in crystals of macromolecules. The
number and occupancies of xenon/krypton-binding sites vary with the

Copyright 2003, Elsevier Inc.
All rights reserved.
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