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The fusion of vesicles with target membranes is controlled by a
complex network of protein–protein and protein–lipid
interactions. Recently determined structures of the SNARE
complex, synaptotagmin III, nSec1, domains of the NSF
chaperone and its adaptor (SNAP), and Rab3 and some of its
effectors provide the framework for developing molecular
models of vesicle fusion and for designing experiments to test
these models. Ultimately, knowledge of the structures of
higher-order complexes and their dynamic behavior will be
required to obtain a full understanding of the vesicle fusion
protein machinery.
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Abbreviations
GDI GDP-dissociation inhibitor
GppNHp guanosine-5′-(β,γ)-imidotriphosphate
NSF N-ethylmaleimide-sensitive factor
PEG polyethylene glycol
SNAP soluble NSF-attachment protein
SNAP-25 synaptosomal-associated protein of 25 kDa
SNARE soluble NSF-attachment protein receptor
VAMP vesicle-associated membrane protein

Introduction
Vesicular trafficking in eukaryotic cells is essential for
diverse cellular processes, including maintenance of dis-
tinct subcellular compartments, protein and hormone
secretion, egg fertilization and neurotransmitter release
[1–5,6••]. The life cycle of a vesicle generally consists of
three stages (Figure 1): endocytosis or formation of the
vesicle from specific cellular membranes; exocytosis or
fusion of the vesicle with its target membrane; and recy-
cling of the components of the protein machinery after
exocytosis. This review focuses on recent structural studies
of the key proteins responsible for exocytosis and recycling. 

Vesicular exocytosis utilizes a protein machinery that is
conserved from yeast to man [7,8]. SNARE (soluble
N-ethylmaleimide-sensitive factor [NSF]-attachment 
protein receptor) proteins are essential components of 
this machinery [2,4]. In synaptic vesicle exocytosis, 
three SNARE proteins are involved: the plasma-
membrane-associated proteins syntaxin and SNAP-25
(synaptosomal-associated protein of 25 kDa), and the
vesicular protein synaptobrevin, also referred to as VAMP
(vesicle-associated membrane protein). Other conserved

proteins include the ATPase NSF [9] and its adaptor,
known as SNAP (soluble NSF-attachment protein) [10],
the Rab class of small G proteins and their effectors [11],
the synaptotagmin family [12] and the nSec1 (neuronal
homolog of the yeast Sec1 protein, also referred to as
Munc18) family [13]. Many other factors that interact with
SNAREs have been characterized, such as complexin
[14], VAP33 [15] and synaptophysin [16]. 

Figure 2 summarizes some of the key stages involved in
synaptic vesicle fusion. Initially, syntaxin is bound to nSec1
and synaptobrevin is probably bound to a factor such as
synaptophysin or VAP33. Both syntaxin and synaptobrevin
are single-pass membrane proteins. A yet to be identified
molecular machinery probably brings the vesicle and plasma
membrane into close proximity, allowing SNAREs on
opposite membranes to form cis complexes [17••].
Synaptobrevin then binds to syntaxin and SNAP-25. At the
priming stage, the system becomes competent to undergo
fusion upon an increase in Ca2+ concentration in the micro-
molar range [18••], possibly involving a Ca2+-binding
protein such as synaptotagmin. At the recycling stage,
α-SNAP and NSF bind to the SNARE complex, and the
SNARE complex is then dissociated upon ATP hydrolysis. 

Before docking, vesicles have to be targeted to the correct
location at the appropriate time. This process is much 
less understood than the later stages of vesicle fusion.
However, some of the molecular components of this target-
ing process are beginning to emerge. Among them are the
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sec6/8 complex in mammalian cells [19] and the exocyst in
yeast [20]. These are large (> 700 kDa) macromolecular
complexes that could be involved in targeting processes
before SNAREs become involved. 

SNAREs
The SNARE complex can be isolated from neuronal cell
extracts [21]. It can also be assembled from recombinantly
expressed and purified proteins in vitro [22,23]. The
membrane anchors are not required for the assembly 
of the SNARE complex. The SNARE complex 
exhibits remarkable thermal and chemical stability
[22,23]. Limited proteolysis of the synaptic SNARE 
complex revealed a core complex with similar bio-
physical properties to the full-length complex [24,25]. 

This core complex is sufficient to promote vesicle fusion
in vitro [26•,27•,28••]. 

The SNARE core complex consists of a parallel four-helix
bundle [29], whereas the N-terminal domain of syntaxin
consists of an antiparallel three-helix bundle [30]
(Figure 3). The core of the four-helix bundle of the
SNARE complex is composed of layers formed by inter-
acting sidechains from each of the four α helices [29].
These layers are highly conserved across the entire
SNARE family. At the center of the core complex, a con-
served ionic layer was found, consisting of an arginine and
three glutamine residues contributed by each of the four
α helices [29]. Interestingly, this ionic layer is sealed off
against solvent by adjacent hydrophobic layers. This
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Stages involved in vesicle–membrane fusion and key proteins involved.
The proteins in the central schematic are color coded as follows:
synaptobrevin, dark blue; synaptophysin, light blue; syntaxin, red;
nSec1, brown; SNAP-25, green; synaptotagmin, yellow; Rab3A, dark
red circle; rabphilin-3A, olive green; Ca2+ channel, magenta; NSF, pink
circle; α-SNAP, sky blue. Surrounding the schematic are crystal
structures of the SNARE complex (blue: synaptobrevin; red: syntaxin;
green: SNAP-25) [29], the N-terminal domain of syntaxin, which is

shown as a separate structure (the structure of the linker between the
syntaxin N-terminal domain and the core SNARE complex is unknown)
[30], the nSec1–syntaxin complex (red: syntaxin; brown: nSec1)
[38•• ], α-SNAP (Sec17 in yeast) [110•• ], NSF-N [106•• ,107•• ], NSF-
D2 [103,104], the complex between the small G protein Rab3A and
the effector binding domain of rabphilin-3A (red: Rab3A; brown:
rabphilin-3A) [92•• ], Rab GDI [96] and domains C2A and C2B of
synaptotagmin [72•• ]. Pi, inorganic phosphate.



energetically somewhat unfavorable configuration pre-
sumably has some functional role during SNARE
complex assembly or disassembly. A glutamine to leucine
mutation in SNAP-25 has been shown to affect exocytosis
in adrenal chromaffin cells [31••]. 

Mutations in these and other layers reduce complex stability
and cause defects in membrane trafficking, even in 
distantly related SNAREs [32]. Based on the conservation
of the core of the SNARE complex, SNAREs were reclas-
sified into Q-SNAREs and R-SNAREs, and it was
proposed that fusion-competent SNARE complexes gen-
erally consist of four-helix bundles comprising three
Q-SNAREs and one R-SNARE [32]. A possible exception
to this 3Q:1R rule is the homotypic vacuolar fusion system,
in which five distinct SNAREs interact [33••]. However,
these experiments were carried out with extracts of yeast
and analyzed by immunoprecipitation, so it is not clear
whether all five vacuolar SNAREs interact quantitatively
in a single pentameric complex. 

SNAREs have several conformational states [34••–36••]
(Figure 4): first, the ‘closed’ conformation of uncom-
plexed syntaxin and the unstructured or flexible
conformations of synaptobrevin and SNAP-25; second,
the binary complex of syntaxin and SNAP-25; and third,
the ternary complex of syntaxin, SNAP-25 and the 
cytoplasmic domain of synaptobrevin. The closed confor-
mation of uncomplexed syntaxin contains a four-helix
bundle made up of the regulatory N-terminal HAHBHC
domain and roughly half of the core complex domain
Hcore (Figure 4). The topology of this closed conforma-
tion was predicted on the basis of NMR data [34••] and a
crystal structure of the yeast syntaxin homolog Sso1 has
now been solved [37••]. A similar conformation of syntaxin
has recently been observed in the crystal structure of 
syntaxin in the syntaxin–nSec1 complex [38••], suggest-
ing that it is the closed conformation of syntaxin that
binds to nSec1. 

Syntaxin switches to an ‘open’ state upon binding to
SNAP-25 [34••]. In this ‘open’ state, binding to the other
SNAREs is mediated by the Hcore domain. Conformational
switching of the Hcore domain, mediated by the HAHBHC
domain, represents a regulatory mechanism for SNARE
complex assembly by affecting the kinetics of ternary com-
plex formation [26•,39]. Formation of binary and ternary
complexes is associated with increasing induction of
α-helical structure in previously unstructured or flexible
regions of SNAREs [22,34••–36••,40]. Because the 
N-terminal half of the syntaxin Hcore domain is always
folded (Figure 4), these data suggest that SNARE com-
plex assembly begins distal to the membrane surfaces and 
proceeds toward them. This ‘zipper’ model of vesicle
fusion was also suggested by experiments using fluores-
cence resonance energy transfer [41], electron microscopy
[4,42,43] and electron spin polarization [44] of labeled
SNARE complexes.

Role of SNAREs
Although the precise function of the SNAREs is the topic of
some debate, there is overwhelming evidence that they play
a fundamental role in membrane fusion. First, site-specific
cleavage of SNAREs by clostridial neurotoxins inhibits neu-
rotransmission [45,46]. Second, SNAREs represent a
minimal fusion machinery: SNAREs reconstituted into arti-
ficial liposomes can induce fusion in vitro [26•,47,48••].
Experiments in a permeabilized PC12 cell system also con-
firmed the importance of SNAREs for fusion in vivo [49••].
Third, the soluble domains of SNAREs spontaneously
assemble into an extremely stable four-helical bundle
in vitro [22,29]. The α-helical composition and the high
thermal and chemical stability are similar to those of pro-
teins involved in viral fusion, possibly indicating a common
ancestral mechanism for both fusion systems [50]. Fourth,
complex formation probably proceeds in a directed fashion,
starting at the membrane-distal end of the complex and pro-
ceeding towards the membrane-proximal C terminus [34••]
(Figure 4). This directed assembly process may bring mem-
branes into close proximity, thus overcoming the
free-energy barrier to stalk formation. The membrane
domains of syntaxin and synaptobrevin appear to be essen-
tial, as replacing them with a geranylgeranyl group inhibits
fusion in yeast [51••]. Recent studies of the transmembrane
domain of synaptobrevin indicate that it is α-helical and tilted
with respect to the bilayer normal by approximately 50°
(ME Bowen, AT Brunger, unpublished data).
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Figure 3

Known crystal structures of components of the 20S complex — SNARE
complex [29], α-SNAP (Sec17 in yeast) [110•• ], NSF-N [106•• ,107•• ]
and NSF-D2 [103,104] — and their speculative localization in a
rotational averaged electron micrograph of the 20S complex [102]. The
packing of the NSF-D2 domain in the crystallographic P6 lattice forms a
hexamer [103,104] that matches the cone-shaped ring-like features of
the electron micrograph. As the D1 and D2 domains have similar
primary sequences, their structures are probably also similar. This
suggests that the two rings consist of the D1 and D2 domains. The
assignment of the N-terminal domain was suggested by matching the
trimeric packing of the three NSF-N domains per asymmetric unit in one
of the crystal forms [107•• ] with the electron micrograph. 
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The hypothetical model presented in Figure 4 assumes
the existence of a partly assembled state of SNAREs
docked between two membranes. Although this state has
not been directly observed, there is indirect evidence for
such an intermediate state. First, the cleavage sites for all
clostridial neurotoxin proteases are located in the C-terminal
(membrane-proximal) half of the core complex [29,46].
However, SNAREs probably have to bind in an extended
conformation to the proteases, as suggested by the co-crystal
structure of a fragment of synaptobrevin and the protease
domain of the botulinum neurotoxin type B [52••]. As
SNAREs are protected against proteolysis in the fully
assembled complex [45,46], this suggests that SNAREs
must exist in partly assembled or ‘loose’ states for signifi-
cant periods of time. Recent experiments further support
this hypothesis: the C terminus of synaptobrevin is sensi-
tive to toxins in the docked state, but the N terminus is not
[53•]. Kinetic studies of chromaffin cell exocytosis
revealed a fusion-competent state that is sensitive to the
attack of clostridial neurotoxins [54]. Inhibition of SNARE
complex assembly by antibody binding differentially
affected kinetic components of exocytosis, suggesting the
existence of loose and tight SNARE complex states [55••]. 

Analysis of PEG-induced fusion of artificial liposomes sug-
gested the existence of two intermediate stages of vesicle
fusion: a stalk and a hemifusion state [56,57]. Assuming that
similar stages exist during the fusion of cellular vesicles
with target membranes, one can speculate that SNARE
complex formation could lower the free-energy barrier to
reaching the stalk intermediate state. In addition, SNARE
complex formation could lower the free-energy transition-
state barriers between the stalk state, the hemifusion state
and the fused state of the system. It is, however, probable
that other factors (such as proteins or the lipid composition
of synaptic vesicles) are involved in regulating these free-
energy barriers, especially in view of the fact that neuronal
vesicle fusion is tightly Ca2+-regulated and proceeds at a

faster timescale (milliseconds) than can be accomplished by
in vitro fusion induced by SNAREs (minutes). 

Other experiments have been interpreted to cast doubt on
the central role of SNAREs in membrane fusion. In vitro
experiments on sea urchin cortical vesicles showed a 
discrepancy between vesicle fusion, as assayed by turbidity
measurements, and the time-course of SNARE complex
formation [58,59]. Homotypic fusion between cortical vesi-
cles is an extremely unlikely event in vivo. In these
experiments, contacts between fusing vesicles therefore
had to be induced by applying a centrifugal force. Thus,
these experiments do not necessarily dispute the role of
SNAREs in the biological context. 

In vitro studies of homotypic vacuolar fusion during yeast
cell division showed that SNARE complexes can be disas-
sembled before fusion [60]. This observation does not
necessarily rule out a role for SNAREs in membrane fusion.
Perhaps SNARE complexes could be disassembled with-
out undocking the membranes if the system is committed
for fusion at the irreversible hemifusion stage [56,57]. 

SNARE interactions are promiscuous
The primary sequence conservation of the structural core
of the SNARE complex casts doubt on the targeting role of
SNAREs in vesicle trafficking, as originally proposed by
the SNARE hypothesis [1]. Indeed, very similar biophysical
and biochemical properties were obtained in vitro for com-
plexes consisting of artificial combinations of SNAREs
that are localized to different compartments in vivo
[61••,62••]. Furthermore, some SNAREs can function at
several different transport steps in vivo [63]. Thus,
SNAREs cannot be the sole determinants of vesicle tar-
geting specificity. Rather, the observed SNARE
localizations may be important for interactions with other
factors, such as nSec1, that interact with nonconserved
SNARE residues [38••]. 

166 Macromolecular assemblages

Figure 4

Conformational states and binding events
involving SNARE proteins and their possible
role in vesicle fusion (zipper model). As
discussed in more detail in the text, SNAREs
have several conformational states:
(a) closed; (b) binary (syntaxin–SNAP-25);
and (c,d) ternary cis SNARE complex. The
intermediate cis complex shown in (c) is
speculative. Synaptobrevin, blue; syntaxin,
red; SNAP-25, green. Undetermined: no
information available about the conformation
of the protein region; flexible, residues that are
probably undergoing significant motion in
solution and are not part of a rigid domain of
the protein. TM, transmembrane. 
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Interactions of syntaxin with nSec1
The partially structured, ‘closed’ state of syntaxin interacts
with nSec1 [37••,38••,64••,65••]. The conformation of syn-
taxin found in the crystal structure of this complex is
dramatically different from that in the ternary SNARE
complex. C-terminal syntaxin residues that are unstruc-
tured or flexible in solution adopt a sequence of small
α-helical fragments connected by short loops when com-
plexed with nSec1. In the ternary SNARE complex, these
residues form a continuous α helix. 

The flexible regions of uncomplexed syntaxin could have
local structure that is related to the structure of syntaxin in
the nSec1–syntaxin complex. The chemical shift dispersion
of α helices is small and the motion produced by flexible
hinges may explain the 1H–15N heteronuclear single quan-
tum correlation (HSQC) NMR spectrum that was observed
for uncomplexed syntaxin [36••] and its yeast homolog Sso1
[34••]. It is thus probable that nSec1 acts by stabilizing one
of the conformations of uncomplexed syntaxin. The con-
formational transition of syntaxin is a striking example of
the role of conformational flexibility in biological function.
In contrast to syntaxin, nSec1 does not undergo major con-
formational changes upon binding to syntaxin [65••]. 

Experiments in yeast show an interaction between sec1
and the assembled plasma membrane SNARE complex
[66••,67••]. This is in contrast with the neuronal case,
whereby interactions between syntaxin and nSec1, and
between syntaxin, SNAP-25 and synaptobrevin are mutu-
ally exclusive [64••]. One could speculate that two distinct
conformations exist for the sec1 family of proteins or that a
transient interaction exists between sec1 and the partially
assembled SNARE complex [38••,64••,67••].

Synaptotagmin
Synaptotagmin is a membrane-associated protein that
interacts with SNAREs, phospholipid membranes, Ca2+

channels and proteins involved in endocytosis [12,68–71].
In the cytosolic portion of this protein, a flexible seven
amino acid linker joins two homologous C2 domains, C2A
and C2B [72••]. The C2A domain binds to anionic phos-
pholipids [73,74] and other accessory proteins, such as
syntaxin [75], in a Ca2+-dependent fashion. No conforma-
tional change is observed upon Ca2+ binding [76], except
for rotamer changes of the Ca2+-coordinating aspartic acid
residues. The C2B domain promotes binding to other C2B
domains [71], as well as to accessory proteins, indepen-
dently of Ca2+. The crystal structure of synaptotagmin III,
which includes the C2A and C2B domains, exhibits differ-
ences in the shape of the Ca2+-binding pocket, the
electrostatic surface potential and the stoichiometry of
bound divalent cations for the two domains [72••]. The
C2A and C2B domains do not directly interact; synapto-
tagmin, therefore, covalently links two independent C2
domains, each with potentially different binding partners.
The C2B domain is involved in oligomerization of synap-
totagmin [77•]. Interestingly, neuronal proteins such as

rabphilin [78] and Doc2 [79] also possess multiple C2
domains similar to those of synaptotagmin. The structure
of the C2B domain of rabphilin is very similar to the C2B
domain of synaptotagmin III [72••,80••]. 

Synaptotagmin and the SNARE complex interact inde-
pendently of Ca2+, although the interaction is enhanced
upon addition of Ca2+ [72••,81•,82]. The Ca2+-binding
domains probably interact with the plasma membrane [73],
whereas the polybasic regions could interact with the
SNARE core complex [29,72••]. 

Rab3A
Members of the Rab family of small G proteins regulate
vesicular membrane traffic in all eukaryotic cells
[11,83–86]. Rab3A predominantly localizes to synaptic
vesicles and plays an important role in the regulation of
neurotransmitter release [87]. Rab proteins were suspected
to be determinants of vesicle targeting specificity because
distinct isoforms display unique cellular localizations [84].
However, studies of chimeric Rab proteins suggested that
Rabs can function at two distinct transport steps — vesic-
ular transport from the endoplasmic reticulum to the Golgi
and fusion of post-Golgi secretory vesicles to the plasma
membrane [88,89] — suggesting that Rabs cannot be the
sole targeting determinant. Like other small G proteins,
the Rab family members may function as molecular
switches or timers, cycling between the inactive GDP-
bound and active GTP-bound forms, regulating their
effector proteins and downstream targets accordingly. 

In the cytosol, Rab proteins are kept in the inactive, GDP-
bound state by the Rab GDI (GDP-dissociation inhibitor),
preventing them from nonspecific binding to membranes.
Upon binding to a specific donor compartment or vesicle,
GDI is displaced by a GDI-displacement factor (GDF).
Exchange of GDP for GTP is then catalyzed by GEFs
(guanine exchange factors), activating the Rab protein and
rendering it resistant to removal from the membrane by
Rab GDI. GTP is hydrolyzed by the intrinsic GTPase
activity of the Rab protein. The transition-state barrier of
the hydrolysis reaction is lowered by GTPase-activating
proteins (GAPs). Once vesicle fusion has occurred, GDI
can release the GDP-bound form of Rab to the cytoplasm
and the cycle begins again. 

Gene knockout of Rab3A impairs regulation of neurotrans-
mitter release [86,90]. The GTP-bound form of Rab3A
interacts with at least two effector proteins, rabphilin-3A
[78] and rim [91], which may interact with, as yet
unknown, downstream targets. Activated Rab3A reversibly
recruits rabphilin-3A to synaptic vesicles [78]. Rim has
sequence similarity to rabphilin-3A, but localizes to the
active zone of the presynaptic plasma membrane, instead
of to synaptic vesicles [91].

A relatively large number of Rab proteins and their effec-
tors are present in eukaryotic cells. A structural basis for

Molecular mechanism of calcium-dependent vesicle–membrane fusion Brunger    167



the specific pairing between these proteins was recently
proposed based on the structure of activated
Rab3A–GTP–Mg2+ bound to the effector domain of
rabphilin-3A [92••]. Rabphilin-3A contacts Rab3A primarily
in two distinct areas [92••]; few conformational changes are
observed upon complex formation [92••,93••]. The first
area involves the Rab3A switch I and switch II regions,
which are sensitive to the nucleotide-binding state of
Rab3A. The second area consists of a hydrophobic surface
pocket in Rab3A that interacts with a SGAWFF structural
element of rabphilin-3A. Based on sequence analysis and
biochemical and structural data, it was proposed that this
pocket or ‘Rab complementarity-determining region’
(RabCDR) establishes a specific interaction between each
Rab protein and its effectors [92••]. Based on the crystal
structure of the Rab3A–rabphilin-3A complex, it was pro-
posed that small G proteins generally can have diverse
surface areas for effector recognition. The recent structure
of Rho complexed with the effector domain of PKN/PRK1
[94•] supports this hypothesis: the variable C-terminal α
helix of the small G protein Rho is involved in binding to
the effector binding domain of PKN/PRK1 in a fashion
similar to rabphilin.

The crystal structure of Sec4, a member of the Rab family
in the G protein superfamily, was determined in two states:
bound to GDP and bound to a nonhydrolyzable GTP 
analog, guanosine-5′-(β,γ)-imidotriphosphate (GppNHp)
[95••]. This represents the first structure of a Rab protein
bound to GDP. Sec4 in both states grossly resembles other
G proteins bound to GDP and GppNHp. In
Sec4–GppNHp, structural features common to active Rab
proteins are observed. In Sec4–GDP, the switch I region is
highly disordered and displaced relative to the switch I
region of Ras–GDP. This structural variability in both the
switch I and switch II regions of GDP-bound Sec4 pro-
vides a possible explanation for the high off-rate of GDP
bound to Sec4 and suggests a mechanism for the regulation
of the GTPase cycle of Rab proteins by GDI proteins.

The crystal structure of GDI has also been solved [96].
GDI functions in recycling and regulating Rab proteins.
Residues have been identified that are probably involved
in binding to Rab proteins, but full elucidation of these
interactions has to await the determination of the structure
of a GDI–Rab complex. 

NSF
According to a current model, NSF and members of the
SNAP family of proteins act together to disassemble
SNARE complexes before and after fusion. SNARE 
proteins can form both cis (same membrane) and trans
(opposing membranes) complexes that are substrates for
SNAPs and NSF [21,60]. As discussed above, trans
SNARE complexes are important for membrane fusion.
Fusion of opposing membranes results in the formation
of cis SNARE complexes that are disassembled for recy-
cling and reactivation by the joint action of SNAP and

NSF. Interestingly, NSF also interacts with glutamate
receptors [97]. An additional function of NSF could be in
glutamate receptor cycling in and out of the synaptic
postsynaptic membrane through endocytosis and exocy-
tosis [98•], a process that may be connected to long-term
potentiation and long-term depression. 

NSF is a hexamer [99] and belongs to the AAA (ATPases
associated with cellular activities) family of proteins [100].
Each NSF protomer contains three domains: an N-terminal
domain required for SNAP–SNARE binding and two
ATPase domains, termed D1 and D2. ATP binding and
hydrolysis by D1 are necessary for the SNARE disassem-
bly reaction to occur, and ATP binding, but not hydrolysis,
by D2 is necessary for hexamer formation [9,101]. SNAP
and NSF bind sequentially to SNARE complexes, forming
so-called 20S particles, named after the sedimentation
behavior of the supercomplex. Rotationally averaged elec-
tron micrographs of 20S particles have been obtained in
the presence of ATPγS [102] and allow one to speculate
about the localization of the structurally known compo-
nents in the 20S complex (Figure 3). 

NSF-D2
NSF-D2 consists of a nucleotide-binding subdomain and a
C-terminal subdomain that is structurally unique among
nucleotide-binding proteins [103,104] (Figure 3). There
are interactions between the bound ATP moiety and both
the neighboring D2 protomer and the C-terminal subdo-
main that may be important for ATP-dependent
oligomerization. Of particular importance are three well-
ordered and conserved lysine residues that interact with
the ATP β- and γ-phosphates, one of which emerges from
a neighboring NSF protomer and probably contributes to
the low hydrolytic activity of D2 [103].

NSF-N
The N-terminal domain of NSF (NSF-N) is required for
SNAP–SNARE binding and disassembly [105]. The struc-
tures of the N-terminal domains of NSF [106••,107••], of
the yeast homolog Sec18p [108•] and of the homologous
VAT protein from the archaebacterium Thermoplasma aci-
dophilum [109•] are nearly identical, illustrating the
structural conservation of the family of AAA ATPases. The
N-terminal domain is composed of two subdomains: a
double-ψ−ψ-barrel and an α−β roll [106••,107••] (Figure 3).
The interface between the two subdomains forms a groove
that is a probable site of interaction with the C-terminal por-
tion of α-SNAP [106••]. Unexpectedly, both subdomains
are structurally similar to domains of the transcription factor
EF-Tu [106••]. Both proteins have an adjacent nucleotide-
binding domain, D1 in NSF and domain 1 in EF-Tu, and
both proteins couple nucleotide hydrolysis to large confor-
mational changes between domains. 

αα-SNAP
The structure of Sec17, the yeast homolog of α-SNAP, con-
sists of a twisted sheet of α-helical hairpins and a globular
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C-terminal domain that is primarily composed of α-helical
hairpins [110••]. Sec17 is structurally related to several
other α/α proteins known to mediate protein–protein inter-
actions as part of larger assemblies: tetratricopeptide
repeats (TPRs) [111], 14-3-3 [112], HEAT repeats [113•]
and clathrin heavy-chain repeats [114•]. The Sec17 twisted
sheet has local similarity to the structure of the TPRs from
protein phosphatase 5, but the overall twist of the sheet of
α-helical hairpins in the two structures is very different. 

Interactions between α-SNAP (Sec17) and SNAREs have
been partially mapped using deletion mutagenesis and
in vitro binding studies. The SNAP-interacting region of
SNAREs overlaps with their core complex-forming regions
[115–117]. This, in conjunction with the structure of the
synaptic core complex [29] and the observed promiscuity
of SNAP–SNARE interactions, suggests that SNAPs 
recognize general surface features (shape or electrostatic
charge distribution) of the parallel four-helix bundle.
Indeed, the curvature of the grooves of the four-helix bundle
of the SNARE complex is similar to the curvature of the
twisted sheet of Sec17 (Figure 3). Electron microscopy and
mutagenesis studies of SNAP–SNARE complexes suggest
that SNAP ‘coats’ the SNARE complex along most of its
length [102]. Residues that are conserved in a variety of
homologous SNAP sequences map predominantly to one
face and to one ridge of the structure of Sec17. These sur-
faces are likely to interact with SNAREs and/or NSF
(Sec18). SNAP may function as a rigid lever, transmitting
the force generated by conformational changes in NSF
(Sec18) to drive disassembly of SNARE complexes [110••]. 

Conclusions
Significant progress has been made in the elucidation of
the structures of proteins involved in vesicular exocytosis.
One of the most striking properties of the vesicular fusion
machinery is the highly dynamic nature of the protein–pro-
tein interactions — binding partners frequently change
and proteins undergo dramatic conformational changes.
Crystal structures can only provide snapshots of the pro-
tein machinery. It remains a challenge to connect these
snapshots in order to obtain a ‘movie’ of the vesicular
fusion machinery and the fusion process itself. 
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