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Recent advances in computational chemistry have produced
force Þelds based on a polarizable atomic multipole descrip-
tion of biomolecular electrostatics. In this work, the Atomic
Multipole Optimized Energetics for Biomolecular Applica-
tions (AMOEBA) force Þeld is applied to restrained
reÞnement of molecular models against X-ray diffraction data
from peptide crystals. A new formalism is also developed to
compute anisotropic and aspherical structure factors using fast
Fourier transformation (FFT) of Cartesian Gaussian multi-
poles. Relative to direct summation, the FFT approach can
give a speedup of more than an order of magnitude for
aspherical reÞnement of ultrahigh-resolution data sets. Use of
a sublattice formalism makes the method highly parallelizable.
Application of the Cartesian Gaussian multipole scattering
model to a series of four peptide crystals using multipole
coefÞcients from the AMOEBA force Þeld demonstrates that
AMOEBA systematically underestimates electron density at
bond centers. For the trigonal and tetrahedral bonding
geometries common in organic chemistry, an atomic multipole
expansion through hexadecapole order is required to explain
bond electron density. Alternatively, the addition of inter-
atomic scattering (IAS) sites to the AMOEBA-based density
captured bonding effects with fewer parameters. For a series
of four peptide crystals, the AMOEBAÐIAS model lowered
Rfree by 20Ð40% relative to the original spherically symmetric
scattering model.
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1. Introduction

The number of X-ray crystal structures in the Protein Data
Bank (PDB) with a resolution of higher than 1.0 Aû continues
to increase rapidly (Bermanet al., 2000). In late 2002, there
were already over 100 structures available at subatomic
resolution (Afonine & Urzhumtsev, 2004), while as of early
2009 the number had more than tripled to well over 300.
Examples include the proteins lysozyme at 0.65 Aû (Wanget al.,
2007), aldose reductase at 0.66 Aû (Howard et al., 2004) and
serine protease at 0.78 Aû (Kuhn et al., 1998), as well as nucleic
acid structures such as B-DNA at 0.74 Aû (Kielkopf et al.,
2000), Z-DNA at 0.60 Aû (Tereshkoet al., 2001) and an RNA
tetraplex at 0.61 Aû (Denget al., 2001). Crystals that diffract to
high resolution are ideal for studying valence-electron distri-
butions (Jelschet al., 2000; Muzetet al., 2003; Zarychtaet al.,
2007; Volkovet al., 2007; Coppens & Volkov, 2004) that dictate
the electrostatic properties of macromolecules. Electrostatics,
in turn, is one of the driving forces in protein and nucleic acid
folding, which should be understood in detail in order to



predict biomolecular thermodynamics and kinetics (Snowet
al., 2002, 2005; Sorin & Pande, 2005; Pandeet al., 2003). In this
work, we contribute an improved theory and algorithm for
computing the anisotropic and aspherical valence-electron
density of molecules for X-ray crystal structure reÞnement.

Calculation of structure factors is generally based on scat-
tering factors deÞned by the isolated-atom model (IAM),
which assumes that the electron density around each atom
is spherically symmetric. However, subatomic resolution
diffraction data capture aspherical features of the electron
density that result from bonding and the local chemical
environment. The difference between the IAM and the true
electron density is deÞned as the deformation density. For
example, aspherical electron-density models of diamond,
silicon and germanium developed by DeMarco and Weiss and
later by Dawson explained the peaks of deformation density at
bond midpoints observed in the experimental data (Dawson,
1967a,b,c; DeMarco & Weiss, 1965). In these works, the IAM
was augmented by atom-centered spherical harmonic expan-
sions, whose physical consequence was to redistribute electron
density from nonbonding lobes into the tetragonal arrange-
ment of bond centers.

A variety of radial functions have been used in combination
with atom-centered spherical harmonic expansions. ModiÞed
Gaussians were promoted by Dawson (1967a), a set of
harmonic oscillator wavefunctions by Kurki-Suonio (1968)
and more recently a formalism based on Slater-type orbitals
(STO) was described by Stewart and coworkers (Epsteinet al.,
1977; Cromeret al., 1976; Stewart, 1979, 1977) and by Hansen
& Coppens (1978), which represents the current standard
(Jelschet al., 2005; Zarychtaet al., 2007; Volkovet al., 2007;
Coppens, 2005). However, spherical harmonics are not the
only basis set available to describe the angular dependence of
the deformation density.

We Þrst present a formulation of anisotropic and aspherical
atomic densities based on Cartesian Gaussian multipoles,
which leads to much simpler formulae for the calculation of
structure factorsvia direct summation in reciprocal space than
the STO-based theory of Hansen & Coppens (1978). We also
demonstrate that Cartesian Gaussian multipoles allow the
computation of structure factorsvia fast Fourier transforma-
tion (FFT) of the real-space electron density (Cooley & Tukey,
1965). The latter approach, originally proposed by Ten Eyck
(1973, 1977), is the basis of the efÞcient macromolecular
reÞnement algorithms (Bru¬nger, 1989; Afonine & Urzhum-
tsev, 2004; Afonineet al., 2007; Agarwal, 1978) implemented in
programs such asCNS (Bru¬nger et al., 1998; Brunger, 2007)
and PHENIX (Adams et al., 2002). The sublattice method
implemented inCNS lends itself to efÞcient parallelization
(Bru¬nger, 1989).

Boys originally proposed Cartesian Gaussian functions as
basis functions to solve the many-electron Schro¬dinger
equation (Boys, 1950). The advantage of Gaussians over STOs
in this context is that two-electron integrals have analytic
forms, which has led to the adoption of Gaussian basis sets for
manyab initio calculations (Hehreet al., 1969, 1970). We note
that the equivalence of spherical harmonics and Cartesian

tensors is well known, with key relationships having been
presented by Stone (1996) and Applequist (1989, 2002).

We apply Cartesian Gaussian multipoles to restrained
crystallographic reÞnements based on the Atomic Multipole
Optimized Energetics for Biomolecular Applications
(AMOEBA) force-Þeld electrostatic model (Ponder & Case,
2003; Ren & Ponder, 2002, 2003, 2004; Schniederset al., 2007;
Schnieders & Ponder, 2007). The AMOEBA electrostatic
model is based on the superposition of permanent atomic
multipoles truncated at quadrupoles and induced dipoles.
Permanent electrostatics represents the electron density of a
group of atoms in the absence of interactions with the envir-
onment, which may include other parts of the molecule or
solvent. Groups are chosen to be relatively rigid in order to
avoid conformational variability in the permanent multipole
moments. Conversely, the induced dipoles of AMOEBA
represent polarization, the response of the electron density to
the local electric Þeld.

Force Þelds are widely used to restrain macromolecular
reÞnement by contributing forces to local optimizations and
molecular dynamics (Bru¬ngeret al., 1987), with the latter used
within simulated-annealing algorithms to promote global
optimization (Bru¬nger, 1988, 1991; Bru¬ngeret al., 1989, 1990,
1997; Kuriyanet al., 1989; Adamset al., 1997; Bru¬nger & Rice,
1997). Up to now, force Þelds in crystallography have been
largely limited to the geometric and repulsive terms and have
had no inßuence on the atomic scattering factors. Therefore,
reÞnement using a scattering model based on AMOEBA
electrostatics is novel and lends insight into the progress being
made in the development of precise, transferable force Þelds.
Another limitation of the use of force Þelds for restraining
X-ray reÞnement has been the lack of proper treatment of
long-range electrostatic interactions, which is overcome in this
work via use of particle-mesh Ewald summation (PME;
Dardenet al., 1993; Essmannet al., 1995; Saguiet al., 2004).

In addition to AMOEBA, polarizable force Þelds are being
studied by a number of other groups. Maple and coworkers
have pursued a model similar to AMOEBA, but with the
permanent moments truncated at dipole order, which has
shown promising results for proteinÐligand complexes
(Friesner et al., 2005; Mapleet al., 2005). As an alternative
to induced dipoles, Patel and Brooks employed a ßuctuating-
charge model of polarization (Patel & Brooks, 2006), while
Lamoureux and Roux have demonstrated success using clas-
sical Drude oscillators (Lamoureuxet al., 2006; Lamoureux &
Roux, 2003). In addition to polarization, Gresh and coworkers
have developed a methodology to include nonclassical effects
such as electrostatic penetration and charge transfer (Gresh,
2006; Greshet al., 2007; Piquemalet al., 2006, 2007).

Although classical potentials can be validated against
a range of experimental observables, for example small-
molecule solvation energies (Shirtset al., 2003; Shirts & Pande,
2005), high-resolution diffraction data can pinpoint deÞ-
ciencies in an electrostatics model with high precision. For
example, we show that truncation of permanent atomic
multipoles at quadrupole order limits the ability of the
AMOEBA model to place charge density at bond midpoints.
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We use an efÞcient solution to this limitation by reÞning
partial charges at bond centers as originally proposed by
Afonine et al.(2007).

2. Theory

2.1. Subgrid fast Fourier transform

The starting point for this work is the subgrid fast Fourier
transform algorithm (SGFFT), which will be brießy summar-
ized (Bru¬nger, 1989). In FFT-based methods, the electron
density is computed over a lattice chosen to be Þne enough to
avoid aliasing effects at a given resolution. This computation
can be made more efÞcient by an artiÞcial increase in the
atomic displacement parameters (ADPs) of all atoms. The
optimum choice inCNS v.1.2 (Brunger, 2007) for the ADP
offset and grid size follows the work of Bricogne (2001). An
important point is that the electron density is only computed
within a cutoff radius around each atom. As the resolution
increases, the cutoff is increased based on an empirical scheme
to maintain agreement between direct-summation structure
factors and derivatives and the SGFFT calculation (Brunger,
2007).

Structure factors are computed by FFT of the electron
density of an asymmetric unit of atoms (Agarwal, 1978). The
SGFFT is based on factorizing this computation into smaller
FFTs that are computed separately on sublattices, which
allows efÞcient parallelization since these tasks are indepen-
dent (Bru¬nger, 1989; Kay Diederichs, private communication).
CNS v.1.21 has implemented this approachvia an OpenMP
environment (courtesy Kay Diederichs, University of
Konstanz; available at http://cns-online.org). Crystallographic
symmetry is then applied to the structure factors, and the
target function and its derivatives with respect to structure
factors are evaluated. Symmetry operators are applied to the
derivatives of the target function with respect to the structure
factors followed by inverse Fourier transform. Using the chain
rule, derivatives of the target function with respect to atomic
parameters are then computed by multiplication and
summation over the local neighborhood around each atom of
the derivatives of the electron density with respect to atomic
parameters.

Although the original SGFFT method was developed with
an isolated-atom description of electron density and isotropic
ADPs, it is generalizable to aspherical Cartesian Gaussian
multipoles and anisotropic ADPs. All that is needed are
formulae for the electron density and the derivatives of the
electron density with respect to atomic parameters, which then
can be inserted into equations (29) and (40) of Bru¬nger (1989).
In the following sections, we develop these necessary
formulae.

2.2. Isolated-atom Gaussian density

The key mathematical property of Gaussians with respect to
efÞcient calculation of structure factors is that they are an
eigenfunction of the Fourier transform (FT). In other words, a
Gaussian in real space transforms to a Gaussian in reciprocal

space andvice versa. Consider the canonical spherically
symmetric Gaussian atomic scattering factor (Agarwal, 1978),

f "n;! #"r# $ ! 3"4" #3=2Pn
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exp %
4" 2! 2jrj2

bi
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where ai and bi are constant parameters Þtted toab initio
calculations on isolated atoms (this work is based on a sum of
six Gaussians;n = 6; Su & Coppens, 1998),! is an expansion/
contraction parameter used to adjust the width of the density
andr is a position vector relative to the center of the atom. Its
FT is given by
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wheres is the reciprocal-lattice vector and we have used the
FT deÞnition given in AppendixA. The reciprocal-lattice
vector is s = htA%1 = (A%1)th, whereh is a column vector
with the Miller indices of a Bragg reßection andA is the
fractionalization matrix that transforms coordinatesr with
respect to a Cartesian basis to fractional coordinatesrfrac as
deÞned in a crystallographic basis set. The DebyeÐWaller
factor (Waller, 1923) is given by

t̂t"s# $ exp"%2" 2stUs# "3#

in reciprocal space, where each element of the symmetric
positive-deÞnite matrixU is deÞnedvia a Cartesian basis
consistent with PDB ANISOU records (Truebloodet al., 1996;
Grosse-Kunstleve & Adams, 2002). Multiplication of (3) by
the atomic form factor from (2) gives the scattering factor
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whereUadd is the artiÞcial isotropic increase or decrease in the
ADP discussed above andI3 is a 3 ' 3 identity matrix.
Removal ofUadd analytically from each structure factor after
the FT is straightforward. The only difference, therefore,
between eachUi is the isolated-atom scattering parameterbi.

Application of the inverse FT to (4) gives the real-space
anisotropic electron density

#"n;! #"r# $ "2" #%3=2Pn

i$ 1
aijUi j

%1=2 exp"%1
2 r

tU%1
i r#; "6#

where |Ui| is the determinant of matrixUi and Ui
%1 is its

inverse. This expression can also be viewed as the convolution
of the Gaussian form factor of (1) with the inverse Fourier
transform of the DebyeÐWaller factor of (3). Although the
underlying isolated-atom scattering factor is spherically
symmetric, convolution with anisotropic ADPs can lead to an
angular dependence in#(n,! )(r). Using the relationship that
B = 8" 2U, one can show that (6) reduces to the isotropic
density expression reported by Bru¬nger in equation (16) of
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Bru¬nger (1989) if all diagonal elements ofUi are equal to
Uiso + bi/8" 2 + Uadd with zero off-diagonal components.

2.3. Polarizable atomic multipole electron density

For the derivation of an atomic multipole expansion from a
collection of point charges we begin with the Taylor expansion
of the electric potentialV(r) at r arising fromn partial point
charges that represent the electron density of an atom,
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where! i is the position of partial chargeci, r $ = @/@r$ is one
component of the del operator,$ 2 {x, y, z} and the Greek
subscripts {$, %} represent the use of the Einstein summation
convention for summing over tensor elements (Stone, 1996).
We omit the constant factor of 1/4"" 0 throughout for com-
pactness. Let the monopole, dipole and traceless quadrupole
moments be deÞned as
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Pn

i$ 1
ci;

d$ $
Pn

i$ 1
ci! i;$ ;

" $% $ 3
2

Pn

i$ 1
ci"! i;$ ! i;%%1

3 ! 2
i &$%#; "8#

where removal of the trace in the deÞnition of the quadrupole
moment is allowed because the potential satisÞes the Laplace
equation (i.e.r 2V = 0). Substitution of the relationships in (8)
into the Þnal expression of (7) gives the electric potential in
terms of a Cartesian multipole expansion, which we truncate
at quadrupole order

V"r# $ "q %d$r $ & 1
3" $%r $r %#

1
r
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We now replace the Coulomb potential of (9) with the
potential from the sum of Gaussians from (1), which is given
by

Õ"n;! #"r# $
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i$ 1
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and Þnd

# "r# $ "q %d$r $ & 1
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We now introduce unique superscripts on the charge, dipole
and quadrupole Gaussian basis sets, denoted by {nq, nd, n" }
and {! q, ! d, ! " }, to allow them to differ in number and width.

# "r# $ qÕ"nq;! q#"r# %d$r $Õ"nd;! d#"r# &1
3" $%r $r %Õ"n" ;! " #"r#:

"12#

The potential of the charge density of (12) quickly approaches
the Coulomb potential asr increases since the error function
goes to unity such that at larger this potential satisÞes the
Laplace equation and the use of a traceless quadrupole tensor
is still justiÞed. Application of the Laplace operator to both
sides of (12) gives the negative of a continuous charge density
based on Cartesian Gaussian multipoles,

#"r# $ %qf "nq;! q#"r# &d$r $f "nd;! d#"r# %1
3" $%r $r %f "n" ;! " #"r#:

"13#

In crystallography the convention is that electron density is
positive, so we will keep the negative sign. Therefore, a
negative partial charge equates to positive scattering density.

Inclusion of ADPs is described by convolution of (13) with
the real-space temperature factor,

#ADP"r# $ #"r# ( t"r#: "14#

Based on the convolution differentiation rule

)r $#"r#* (t"r# + r $)#"r# ( t"r#* "15#

the solution to (14) is given by substituting forf(r) in (13) with
the corresponding#(r) from (6) to give

#ADP"r# $ %q#"nq;! q#"r# &d$r $#"nd;! d#"r#

% 1
3" $%r $r %#"n" ;! " #"r#: "16#

However, sinceq only represents partial atomic charges, the
contributions from valence and core electrons need to be
added. Additionally, the AMOEBA force Þeld divides each
atomic dipole moment into permanent (d) and induced (u)
contributions to account for polarization. Therefore, we
construct the total atomic electron density at a locationr
relative to the center of atomj by adding the contribution of
core and valence electron density to (16) and splitting the
dipole into permanent and induced components to give

#ADP;j"r# $ P"c#
j #"6;1#

j "r# & )P"v#
j %qj*#

"6;! v#
j "r#

& "dj;$ & uj;$#r $#"1;! d#
j "r# %1

3" j;$%r $r %#"1;! " #
j "r#;

"17#

wherePj
(c) is the integer number of core electrons (carbon has

two) and Pj
(v) is the integer number of valence electrons

(carbon has four). The superscripts on the anisotropic Gaus-
sian form factors#j

(n,! )(r) have been made explicit for our
model. We make the reasonable choice of using the isolated-
atom scattering parameters for both core and valence electron
densities. The width of the core electron density is frozen at
the isolated-atom description (! = 1) based on the observation
that chemical bonding does not perturb it signiÞcantly
(Hansen & Coppens, 1978). On the other hand, the width of
the valence electron density expands or contracts relative to
the isolated-atom model owing to a gain or reduction,
respectively, of electron density from or to covalently bonded
atoms. This effect is modeled by the width parameter of the
valence density! v. In this work, the dipole and quadrupole
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densities are described by a single Gaussian (nd = n" = 1)
based ona and b parameters set to unity. The widths of the
dipole and quadrupole densities are controlled by the! d and
! " parameters. In this work, the width parameters {! v, ! d, ! " }
are optimized against the diffraction data for each AMOEBA
multipole type. The multipole moments are Þxed by the
AMOEBA force Þeld and are not reÞned against the data.

The partial derivatives through second order of the aniso-
tropic and aspherical density deÞned in (6), which are required
for the real-space multipolar density given in (17), are

r $#"n;! #"r# $ %"2" #%3=2Pn

i$ 1
aijUi j

%1=2

' exp"%1
2r
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i r#"rtU%1
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2r
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i u%# %U%1

i;$%*;

"18#

whereu$ is a unit vector in the$ direction with$ 2 {x, y, z}. In
addition, the third-, fourth- and Þfth-order terms of the
expansion are presented as supplementary information along
with a Mathematica notebook.1

To the best of our knowledge, (17) is the Þrst expression
reported in the literature for a real-space form factor that is
the convolution of an atomic multipolar electron density with
anisotropic ADPs. This equation opens the door to exploring
precise polarizable atomic multipole reÞnements in tandem
with efÞcient computation of structure factorsvia FFT.

Given a molecular conformation, the AMOEBA perma-
nent multipole moments for each atom in the global coordi-
nate frame (q, d, " ) are convertedvia rotation from a local
frame. For example, as shown in Fig. 1, thez axis of the local
frame for the carbonyl O atom of the peptide bond is in the
direction of the bond to the carbonyl C atom. Its positivex
axis is located in the O CÑC$ plane in the direction of the
C$ atom and they axis is chosen to give a right-handed
coordinate system (Ren & Ponder, 2002). The induced dipole
(u) on each atom is determinedvia a self-consistent Þeld
(SCF) calculation, where the Þeld is a sum of contributions
from the permanent atomic multipoles and induced dipoles.
The AMOEBA polarization model is described in greater
detail in work by Ren & Ponder (2002).

2.4. Derivatives of the electron density

2.4.1. Atomic coordinates. As a simpliÞcation, the deriva-
tion up to this point has assumed that the atomic center was
the origin of the coordinate system. However, for this section
on the derivatives with respect to atomic coordinates we place
atomj at rj in the global frame. In order to keep the derivation
manageable, we split the total electron density into that
produced by permanent charges#perm and that of induced
charges#ind,

#total"r# $
Pn

j$ 1
#perm;j"r %rj# &#ind;j"r %rj#: "19#

The derivative of the permanent multipole electron density of
atom j with respect to the$ coordinate of atomj is given by
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where the derivative of the dipole and quadrupole densities
are each composed of two terms owing to the chain rule. As
described above, the dipole and quadrupole moments of each
atom are implicitly a function of its coordinates and the
coordinates of a few of its bonded neighbors (atomsk) that
deÞne the local frame of the multipole. Therefore, the deri-
vative of the permanent multipole electron density of atomj
with respect to the$ coordinate of atomsk must also be
considered,
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Figure 1
The local multipole frame of the carbonyl O atom of the peptide
backbone is shown. The positivez axis is along the C O bond and thex
axis is chosen in the O CÑC$ plane in the direction of the C$ atom. The
y axis is directed into the page in order to achieve a right-handed
coordinate system. Also shown are the nonzero multipole moments of the
O atom and a qualitative representation of their shape. Thedz Cartesian
Gaussian dipole (in Debye units) places electron density along the CO
bond, while the trace of the Cartesian Gaussian quadrupole (in
Buckingham units) positions electron density approximately at lone-pair
positions.

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: DZ5164). Services for accessing this material are described at the
back of the journal.
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where the derivatives of spherically symmetric terms are zero
with respect to the coordinates of atomk because they have no
dependence on the orientation of the local frame. Note that
the partial derivative of an anisotropic and aspherical density
tensor with respect to an atomic coordinate is the negative of
the partial derivatives given in (18), simply due to the negative
sign on rj. The derivatives of the polarizable density with
respect to atomic coordinates are very speciÞc to the
AMOEBA electrostatic model and are discussed in Appendix
B. However, we note that computing the derivatives of a
polarizable density with respect to atomic coordinates is
O(n2logn) using PME, which quickly becomes the most
expensive part of the overall calculation.

2.4.2. ADPs. The derivative of the anisotropic electron
density of atomj with respect to an anisotropic displacement
parameterUj,() is given by
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and requires the partial derivatives of the Cartesian Gaussian
tensors with respect to ADP components. Introducing a few
relationships facilitates their presentation. Firstly, based on
the equality

@jUj
@U()

$ j UjU%1
() "2%&() # "23#

we have

@jUj%1=2

@U()
$ % 1

2 jUj%1=2U%1
() "2%&() #; "24#

where the Kronecker delta&() is unity for diagonal elements
of U and zero otherwise. Differentiating an identity from
matrix algebraU%1U = I gives the following relationship

@U%1

@U()
$ %U%1 @U

@U()
U%1; "25#

which makes it possible to differentiateU instead of its
inverse. This is preferred since only one or two elements of
@U/@U() are equal to unity and the rest are zero. SpeciÞcally, a
single element is equal to unity if( equals ) , while two
elements are equal to unity otherwise, sinceU() and U)(

represent the same variable in this case. For convenience, we
deÞne a 3' 3 matrixJ(() ),

J"() # $ %U%1 @U
@U()

U%1; "26#

and based on the chain rule we have

@
@U()

exp"%1
2r

tU%1r# $ %1
2r

tJ"() #rexp"%1
2r

tU%1r#: "27#

Differentiating (6) with respect toU() and using (24), (27) and
the product rule gives
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' f 1
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i u$#g
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& )rtJ"() #
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i u%# & "rtU%1
i u$#)rtJ"() #
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2.4.3. Gaussian width. The Gaussian width parameter!
controls radial expansion and contraction of the Cartesian
Gaussian multipoles. Analogous parameters are used to
optimize the STOs within the Hansen and Coppens scattering
model (Hansen & Coppens, 1978). The derivative of the
electron density with respect to this parameter is similar to the
gradient for the ADP parameters. Two chain-rule terms are
necessary. Firstly, the gradient of the normalizing term

@
@!

"jUi j
%1=2# $ %

1
2

jUi j
%3=2 @jUi j

@!
; "29#

where

@jUi j
@!

$ %
3b3

i

256" 6! 7
%

b2
i "U11 & U22 & U33 & 3Uadd#

16" 4! 5

& f bi)U
2
12 & U2

13 & U2
23 %U11U22 %U11U33 %U22U33

%2Uadd"U11 & U22 & U33# %3U2
add*g=4" 2! 3: "30#

Secondly, the gradient of the inverse ADP matrix is most
conveniently expressed using the gradient of the original ADP
matrix,

@U%1
i

@!
$ %U%1

i
@Ui

@!
U%1

i ; "31#

where

@Ui

@!
$ %

bi

4" 2! 3
I3: "32#

For convenience the matrixJi
(! ) is deÞned to more compactly

represent this result,

J"! #
i $

bi

4" 2! 3
U%1

i U%1
i : "33#

Differentiating (6) with respect to! and using (29), (33) and
the product rule gives
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together with the third- and fourth-order terms available as
supplementary information.

2.5. Fourier transform of the polarizable atomic multipole
electron density

Remarkably, the FT of the anisotropic and aspherical
density given in (17) is simply

#̂#ADP;j"s# $ fP"c#
j f̂f "6;1#

j "s# & )P"v#
j %qj*̂ff

"6;! v#
j "s#

% "dj;$ & uj;$#2" is$f̂f "1;! d#
j "s#

& 1
3" j;$%4" 2s$s%̂ff "1;! " #

j "s#ĝttj"s#; "35#

where the dipole and quadrupole terms in (35) depend on the
FT of the partial derivatives deÞned in (18). Through Þfth
order the reciprocal-space tensors are

F)r $#"n;! #"r#*"s# $ %2" is$f̂f "n;! #"s#̂tt"s#

F)r $r %#"n;! #"r#*"s# $ %4" 2s$s%̂ff "n;! #"s#̂tt"s#

F)r $r %r ' #"n;! #"r#*"s# $ 8" 3is$s%s' f̂f "n;! #"s#̂tt"s#

F)r $r %r ' r &#
"n;! #"r#*"s# $ 16" 4s$s%s' s&f̂f

"n;! #"s#̂tt"s#

F)r $r %r ' r &r "#
"n;! #"r#*"s# $ %32" 5is$s%s' s&s" f̂f

"n;! #"s#̂tt"s# "36#

and in compressed tensor notation the general expression for
order u + v + w is

F)r u
xr v

yr
w
z #"n;! #"r#*"s# $ "%2" i#u&v&wsu

as
v
bs

w
c f̂f "n;! #"s#̂tt"s#: "37#

This expression is considerably more compact than any
reported previously for an aspherical scattering factor in
reciprocal space, particularly the formulation based on STOs
and spherical harmonics (Hansen & Coppens, 1978). Notably,
our formulation has no dependence on cumbersome Fourier
Bessel transforms of Slater-type functions (Dawson, 1967a;
Hansen & Coppens, 1978; Su & Coppens, 1990). Our equation

(35) has been implemented by Ôdirect summationÕ for com-
parison to the performance of the FFT algorithm.

3. Scattering models

Four scattering models were implemented by modifying and
combining the CNS (Bru¬nger et al., 1998) andTINKER
(Ponder, 2004) code bases. The scattering models were added
to the CNS code base, whileTINKER was used to compute
AMOEBA chemical forces and to supplyCNS with polariz-
able multipoles in the global frame.

3.1. Isolated atom

The Þrst scattering model (ÔIAMÕ) is the conventional IAM
based on the relativistic elastic scattering factors described by
Su & Coppens (1998).

3.2. Isolated atom with inter-atomic scattering

The second scattering model (ÔIAMÐIASÕ) augments the
IAM with inter-atomic scattering sites at bond centers
(Afonine et al., 2007). Unlike the model of Afonine and
coworkers, our implementation does not include IAS sites at
lone pairs or at the center of aromatic rings. We have
neglected these sites based on the rationale that the
AMOEBA electrostatic model is sufÞcient to capture these
details of the electron density, which we provide further
evidence for below when discussing the reÞnement of a Tyr-
Gly-Gly tripeptide.

In our approach, chemically equivalent bonds are
constrained to use the same IAS parameters. Charge density
that is added to or removed from bond centers is exactly
balanced by changing the net charge of the bond-deÞning
atoms. For example, a bond charge of%0.2 e requires atomic
charge increments that sum to 0.2 e. In this way, all molecules
retain their original net charge. Each bond type requires three
parameters: the charge increments of both atoms and the
Gaussian width of the scattering site. Bond types are deÞned
based on the concatenation of the AMOEBA force-Þeld atom
types.

3.3. AMOEBA

The third scattering model (ÔAMOEBAÕ) is based on the
polarizable atomic multipoles of the AMOEBA force Þeld.
Each chemically unique multipole type requires three Gaus-
sian width parameters as described inx2. The induced dipoles
were iterated to self-consistency using PME whenever any
atomic coordinates were changed during reÞnement (Darden
et al., 1993; Saguiet al., 2004; Essmannet al., 1995).

3.4. AMOEBA with inter-atomic scattering

The Þnal scattering model (ÔAMOEBAÐIASÕ) augments
AMOEBA electrostatics with inter-atomic scattering sites. It
became clear during the course of this study that an atomic
multipole expansion truncated at quadrupole order is insuf-
Þcient to capture bond charge density for most molecular
geometries. This is consistent with theoretical observations by
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Stone and coworkers that the convergence of a distributed
multipole analysis (DMA) may be improved by using both
atoms and bond centers as expansion sites (Stone & Alderton,
1985; Stone, 2005). Furthermore, experimental data from the
X-ray scattering of diamond and silicon, simple examples of
tetrahedral bonding geometry, are explained by the super-
position of one atomic octopole moment and one atomic
hexadecapole moment (Dawson, 1967a,b). The characteristics
of the four scattering models are further clariÞed below with
respect to four peptide test cases.

The following computational details were constant across
all of the reÞnements. The isotropic ADP offsetUaddwas set to
1/(4" 2), which is equivalent toBadd= 8" 2Uadd= 2, the FFT grid
factor to 0.33 (as appropriate for crystal structures at sub-
atomic resolution), and the electron-density cutoff around
each atom was 18 (speciÞed by theElim parameter inCNS).
These conservative parameters led to close agreement
between direct summation and FFT computation of structure
factors. TheCNSparameterwA that controls the weighting of
X-ray target function relative to the force-Þeld energy was set
to 1.0, although we also tested 0.2.

Etotal $ wA EX-ray & Eforce field: "38#

This raisedRfree values by less than 0.1% and lowered the
AMOEBA potential energy differences between reÞnements

presented below, but did not alter any trends or our conclu-
sions. It should be noted that force-Þeld restraints are not
necessarily required for reÞnement at subatomic high resolu-
tion. However, their use in this study gives an insight into the
relative energetic cost of the structural changes arising from
differences in the four scattering models. A modiÞed version
of the refine.inp CNStask Þle was used for all reÞnements
using the MLI target function.

4. Applications

To demonstrate the behavior of X-ray reÞnements based on
Cartesian Gaussian multipoles, we present two sets of appli-
cations. The Þrst set is simply to illustrate the performance of
direct summationversusFFT and SGFFT computation of
structure factors as a function of system size. The second set
describes reÞnements on a series of four peptide crystals that
diffract to 0.59 Aû resolution or better. All examples use the
AMOEBA force Þeld for chemical forces, instead of the
default CNSforce Þeld based on Engh & Huber parameters
(Engh & Huber, 1991). Although the reÞnements were
performed in the native space group of each crystal,
AMOEBA energies and gradients as computed using the
TINKER code base required expanding toP1. This did not
increase the number of reÞned variables, but suggests the need
for an AMOEBA code that takes advantage of crystal
symmetry.

4.1. Runtime scaling on protein data sets

Evaluation of the target function and its derivatives by
direct-summation calculation of structure factorsvia (35) and
(36) isO(Natoms' Nreßections' Nsymm). Alternatively, the FFT
algorithm based on (17) and (18) isO(Ngrid ' logNgrid), where
the number of grid pointsNgrid depends on the resolution of
the diffraction data. Aspherical reÞnements based on the
HansenÐCoppens formalism are currently limited to direct
summation, since the real-space form of the electron density
convolved with ADPs is unknown. Therefore, the perfor-
mance of X-ray reÞnements based on Cartesian Gaussian
multipoles and FFT is of particular interest. The results are
summarized in Table 1 and are plotted in Fig. 2. Although the
performance difference is only about a factor of two for the
small protein crambin, over an order of magnitude improve-
ment is achieved for both ribonuclease A and aldose reduc-
tase. Parallelization with the SGFFT method results in a
further signiÞcant speedup (a speedup of a factor of nearly
four relative to a single processor on a four-processor
machine).

4.2. Refinement of peptide crystals

In principle, a more precise scattering model based on
Cartesian Gaussian multipoles with coefÞcients from the
AMOEBA electrostatics model should improve the quality of
reÞnements relative to the IAM as judged by bothRfree and
the potential energy of the asymmetric unit. Furthermore, the
quality of the AMOEBA potential energy function can also be
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Figure 2
The scaling of the Cartesian Gaussian multipole model, truncated at
quadrupole order, is plotted on a logÐlog scale for computation of the
intensity-based maximum-likelihood target function (MLI) for direct
summation, FFT and SGFFT. Direct summation scales linearly with the
product of the number of atoms, the number of reßections and the
number of symmetry operators. Computation of the crystallographic
target function by FFT of the Cartesian Gaussian multipole electron
density shows a speedup of a factor of between 1.8 and 14.5 compared
with direct summation. A further speedup factor of nearly four is
achieved using the SGFFT method on a four-processor machine.



assayed, since it is reasonable to expect that
potential energy andRfree should be corre-
lated.

The peptide crystals studied include YG2

(Pichon-Pesmeet al., 2000), cyclic P2A4

(Dittrich et al., 2002) and AYA with three
waters or with an ethanol molecule
(Cheþcin«ska, Forsteret al., 2006; Cheþcin«ska,
Mebs et al., 2006). Detailed descriptions of
the unit-cell parameters, number of atoms,
resolution and measured reßections are
given in Table 2. The reÞnement results are
summarized in Table 3 and compared with
previous work below.

4.2.1. YG2. The Rfree values of the IAM
and IAMÐIAS reÞnements of YG2 (4.60 and
3.86%, respectively) are slightly lower than
those reported by Afonine and coworkers
(4.72 and 4.06%, respectively; Afonineet al.,
2007). TheRfree value of the AMOEBAÐ
IAS reÞnement (3.50%) is a signiÞcant
improvement. TheRwork value (3.17%) of
the AMOEBAÐIAS reÞnement is also lower
and is comparable to multipolar reÞnements
reported by Volkov and coworkers using
transferred or reÞned multipole coefÞcients
(3.66% and 3.42%, respectively; Volkovet
al., 2007). Cross-validation-based compar-
isons are unavailable in this case. We note
that the AMOEBAÐIAS reÞnement used a
reßections-to-parameters ratio of 11.1,
which is slightly higher than the value of 10.6
reported by Volkov and coworkers using
reÞned multipole coefÞcients. This is
computed based on the number of reßec-
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Figure 3
(a) IAM, ( b) IAMÐIAS, (c) AMOEBA and ( d) AMOEBAÐIAM reÞnements, respectively, for
GY2. TheFo %Fc and 2Fo %Fc * A-weighted electron-density maps are contoured at 3.5* and
shown in green and gray, respectively. Both the IAM and AMOEBA models fail to explain the
electron density at bond centers seen in the data. In addition, the IAM model does not account
for lone-pair density on the O atom.

Table 2
ReÞnement systems.

Molecule Space group and unit-cell parameters (Aû, , ) Non-H atoms H atoms Bonds dmin (Aû) Reßections

YG2 P212121, a = 7.98,b = 9.54,c = 18.32 22 19 40 0.43 4766
P2A4 P212121, a = 10.13,b = 12.50,c = 19.50 35 36 72 0.37 24878
AYA + 3 waters P21, a = 8.12,b = 9.30,c = 12.53,%= 91.21 26 27 50 0.59 5019
AYA + ethanol P21, a = 8.85,b = 9.06,c = 12.36,%= 94.56 26 27 52 0.59 5258

Table 1
Comparison of computational efÞciency of direct-summation, FFT and SGFFT methods for the computation of the Cartesian Gaussian multipole
scattering factors.

The permanent multipole expansion was truncated at atomic quadrupoles and polarization was includedvia induced dipoles. The FFT method shows a speedup
factor of 1.8Ð14.5 relative to direct summation. Parallelization by SGFFT provided an additional factor of 3.7Ð3.9 using four processors. All calculations were
performed on a MacPro workstation with 2' 2.66 GHz Dual Core Intel Xeon processors.

PDB
code Atoms Reßections Nsymm

Atoms ' reßections'
Nsymm' 10%6 Direct (s) FFT (s) Direct/FFT SGFFT (s) Direct/SGFFT

1ejg 642 112209 2 144.1 49.9 28.1 1.8 7.3 6.8
2vb1 2544 187165 1 476.1 301.8 91.5 3.3 23.6 12.8
1fn8 4294 158550 1 680.8 245.1 45.8 5.4 12.4 19.8
1dy5 4835 159422 2 1541.6 505.6 37.0 13.7 9.7 52.1
1us0 6865 511265 2 7019.7 2346.2 162.3 14.5 42.3 55.5



tions reported in Table 2 and the number of parameters given
in Table 3.

Electron-density maps of the tyrosine ring for the four
scattering models are shown in Fig. 3, which lend visual insight
into their properties. The non-H atom positions are apparent

in the 2Fo % Fc contours for each
reÞnement. The standard IAM scat-
tering model underestimates the elec-
tron density at bond centers and at the
oxygen lone-pair sites, as shown by the
Fo % Fc contours. Our IAMÐIAS scat-
tering model explains the electron
density at bond centers, but does not
capture lone-pair electron density.
Conversely, the AMOEBA model
places electron density approximately
at the lone-pair positions but not at
bond centers. Finally, the AMOEBAÐ
IAS model explains much of the lone-
pair and bonding electron densities.

4.2.2. P2A4. The Rfree values of our
IAM and IAMÐIAS reÞnements of
P2A4 (3.73 and 3.01%, respectively)
agree closely with the values of Afonine
and coworkers (3.63 and 3.23%,
respectively; Afonineet al., 2007). The
Rfree value of the AMOEBAÐIAS
reÞnement (2.94%) is lower by 0.07%,
which is the least amount of improve-
ment seen for AMOEBAÐIAS relative
to IAMÐIAS in this study. TheRwork

value (2.86%) of the AMOEBAÐIAS reÞnement is slightly
higher, but comparable to those reported by Volkov and
coworkers using transferred or reÞned multipole coefÞcients
(2.60% and 2.53%), although this work uses a higher reßec-
tions-to-parameters ratio (50.3 compared with 43.6; Volkovet
al., 2007). As for YG2, cross-validation was not performed.
The similarity of theR values for YG2 and P2A4 between the
AMOEBAÐIAS reÞnements and the multipolar reÞnements
of Volkov and coworkers is consistent with the principle that
bond scattering sites capture density that is represented by
higher order atomic moments missing in the AMOEBA model
(octopole and hexadecapole).

In Fig. 4 the precision of theRwork and Rfree values
computed using discrete FTs are compared with analytic
direct summation for P2A4 under the AMOEBA scattering
model. Agreement to four decimal places is seen forBadd

values between 0 and 3 Aû2, which serves as validation of the
correctness of (17) and (35). These results support the
conclusion that FFT-based computation of structure factors is
appropriate for anisotropic and aspherical scattering models.

4.2.3. AYA. The AYA data sets were chosen because of the
extremely low temperature achieved during the measurement
of structure factors (9 K for AYA + three waters and 20 K for
AYA + ethanol). For AYA + water, Checinska and coworkers
(Cheþcin«ska, Forsteret al., 2006; Cheþcin«ska, Mebset al., 2006)
originally reported anR value of 2.4%, which is in agreement
with the R value of our IAM reÞnement (2.67%). Addition of
IAS lowered the Rfree statistic from 2.71% to 2.39%, while
addition of polarizable atomic multipole electron density
showed a further improvement to anRfree of 1.95%. For
AYA + ethanol the Rwork value of the IAM (3.20%) is
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Table 3
ReÞnement statistics and the relative AMOEBA potential energy per asymmetric unit are given for
four small peptide crystals using the IAM, IAMÐIAS, AMOEBA and AMOEBAÐIAS scattering
models.

In all cases, the lowestRfree was found using the AMOEBAÐIAS scattering model. Furthermore, the
structure with the lowest AMOEBA potential energy per asymmetric unit also corresponded to
AMOEBAÐIAS reÞnement.

Rwork/Rfree (%)

Molecule
Scattering
model Nparam

Ndata/
Nparam Iobs/* (Iobs) > 0 Iobs/* (Iobs) > 3

Energy 
(kcal mol%1)

YGG IAM 274 17.4 4.73/4.74 4.41/4.60 36.5
IAMÐIAS 349 13.7 3.93/4.01 3.59/3.86 7.2
AMOEBA 355 13.4 4.50/4.56 4.16/4.37 6.8
AMOEBAÐIAS 430 11.1 3.54/3.72 3.17/3.50 0.0

PPAAAA IAM 339 73.4 4.25/4.22 3.65/3.73 32.2
IAMÐIAS 417 59.7 3.56/3.48 3.00/3.01 18.3
AMOEBA 417 59.7 4.24/4.23 3.69/3.77 12.9
AMOEBAÐIAS 495 50.3 3.42/3.42 2.86/2.94 0.0

AYA + 3 waters IAM 342 14.7 2.75/2.79 2.67/2.71 17.5
IAMÐIAS 411 12.2 2.24/2.47 2.16/2.39 4.1
AMOEBA 423 11.9 2.40/2.55 2.31/2.47 4.7
AMOEBAÐIAS 492 10.2 1.72/2.03 1.64/1.95 0.0

AYA + ethanol IAM 342 15.4 3.30/3.50 3.20/3.33 23.1
IAMÐIAS 423 12.4 2.32/2.66 2.21/2.49 14.8
AMOEBA 435 12.1 3.42/3.75 3.32/3.58 3.7
AMOEBAÐIAS 516 10.2 1.90/2.25 1.79/2.08 0.0

  1 kcal mol%1 = 4.186 kJ mol%1.

Figure 4
The precision of numerical computation of theRwork andRfree valuesvia
FFT is compared with analytic direct summation as a function of the
isotropic increaseBadd in ADP parameters for P2A4 under the AMOEBA
scattering model. Note thatBadd = 8" 2Uadd.



comparable to that reported originally by Cheþcin«ska and
coworkers (2.9%). IAMÐIAS loweredRfree from 3.33 to
2.49%, while AMOEBAÐIAS achieved 2.08%.

4.3. Refinement summary

The results for all four peptide reÞnements are summarized
in Fig. 5. In every case, use of the AMOEBAÐIAS scattering
model relative to the IAM scattering model lowered bothRfree

and the potential energy of the crystal. When the IAM scat-
tering model is used, molecular conformations are highly
strained to compensate. For example, HÑC atom bonds are
too short because the IAM model centers electron density at
the hydrogen nucleus. In the crystal structures, this electron
density is shifted towards the C atom. As the description of the
electron density is improved, the molecular conformation
relaxes by approximately 16 kJ mol%1 per residue. The precise
amount of relaxation depends on the weighting between the
crystallographic target and the force Þeld. Unrestrained
reÞnements with an IAM scattering model could adopt even
more unphysical conformations. This suggests that accurate
chemical restraints are necessary even for ultrahigh-resolution
reÞnements unless an anisotropic and aspherical scattering
model is used.

In Fig. 6, we present plots of the IAS sites that were reÞned
for each peptide system. Their Gaussian full-width at half-
maximum (FWHM) is plotted against charge magnitude for
both the IAMÐIAS and the AMOEBAÐIAS models. The
majority of the charges under the IAMÐIAS model and all of
the charges under the AMOEBAÐIAS model reÞned to

negative partial charge values (or positive scattering density),
which is consistent with the physical concentration of charge
density at chemical bonds. The similarity of the reÞned charges
between the IAMÐIAS and the AMOEBAÐIAS models
suggests that an atomic multipole description of electron
density truncated at quadrupole order underestimates density
at trigonal and tetrahedral bond centers.
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Figure 5
The improvement arising from the AMOEBAÐIAS scattering model,
relative to the IAM model, is plotted as a function of relative percentage
improvement inRfree value and the relative AMOEBA potential energy
per residue. For all data sets, the bestRfree value and lowest potential
energy per residue were achieved using the AMOEBAÐIAS scattering
model. 1 kcal mol%1 = 4.186 kJ mol%1.

Figure 6
For the inter-atomic scattering sites of the IAMÐIAS (a) and AMOEBAÐ
IAS (b) scattering models, the reÞned Gaussian full-width at half-
maximum (FWHM) is plottedversuspartial charge magnitude. The
majority of charges for the IAMÐIAS model and all charges for the
AMOEBAÐIAS are negative. The sub-angstrom FWHM values are
consistent with very localized bond densities.



5. Conclusions

Cartesian Gaussian multipoles offer an efÞcient alternative to
the Hansen and Coppens formulation of aspherical scattering.
They eliminate the use of Slater-type functions and allow
structure factors to be computed by FFT. Numerical tests show
that that FFT and direct-summation implementations of
Cartesian Gaussian multipoles agree to high precision. For
subatomic resolution biomolecular data sets such as ribo-
nuclease A and aldose reductase, parallelized computation of
structure factors using the SGFFT method results in a speedup
of one to two orders of magnitude compared with direct
summation.

Ideally, a force-Þeld electrostatics model should be accurate
enough to explain the electron density observed in X-ray
diffraction experiments. Although the AMOEBA polarizable
multipole force Þeld energetic model shows promise, trunca-
tion of the permanent moments at quadrupole order system-
atically underestimates electron density at bond centers. Our
results suggest that the added computational expense of
including hexadecapole moments in the atomic scattering
factor computation is justiÞed. As supplementary information
we have provided a Mathematica notebook and formulae that
allow computation of Cartesian Gaussian multipoles up to the
fourth order in anticipation of further improvements to force
Þelds.

In the near future, we will present the results of applying
our polarizable atomic multipole reÞnement methodology to
macromolecules. For ultrahigh-resolution macromolecular
data sets, such as HEWL at 0.65 Aû (Wang et al., 2007), our
scattering model signiÞcantly improves reÞnement statistics, as
it does for the simpler peptide cases presented here. Equally
exciting will be the use of the AMOEBA force Þeld and in
particular the electrostatic forces to orient water molecules in
the absence of clear H-atom electron density. We anticipate
that reÞnement of hydrogen-bonding networks will enhance
the usefulness of X-ray crystallography experiments with
respect to explaining pKa shifts, ligand-binding afÞnities and
enzymatic mechanisms.

APPENDIXA
Fourier transform definition

The deÞnition and notation for the Fourier transform as used
in this work is given by

f̂f "k# $
R1

%1
f "t#exp"2" ikt#dt

$ F)f "t#*"k# "39#

and the corresponding inverse Fourier transform by

f "t# $
R1

%1
f̂f "k#exp"%2" ikt#dk

$ F%1)f̂f "k#*"t#: "40#

APPENDIXB
Derivative of the polarizable electron density with
respect to atomic coordinates

The total polarizable electron density arising from the induced
dipole of all atoms is given by

#ind"r# $
Pn

i$ 1
ui;%r i;%#"1;! d#

i "r#: "41#

The gradient of this density with respect to the$ component
of atom j is
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The second term is nonzero only fori = j and is simple to
calculate. The Þrst term, however, depends on@ui,%/@rj,$ which
is the derivative of a component of the induced dipole of atom
i with respect to the$ component of atomj. In other words,
perturbing the position of atomj affects not only its own
scattering but that of all polarizable atoms. The induced dipole
on atomi arises from the self-consistent crystal Þeld multiplied
by the polarizability,

ui $ $iEi

$ $i

P
k6$ i

T"1#
ik Mk &

P
k6$ i

T"11#
ik uk

" #
; "43#

where$i is the atomic polarizability of atomi, Tik
(1) is a matrix

of tensors that produces the Þeld at sitei
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andTik
(11) is the matrix of tensors that produces the Þeld at sitei
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owing to the induced dipoleuk at sitek. For simplicity, we have
not formulated (43) using PME electrostatics. Therefore, the
sum overk includes all atoms in the crystal except atomi. The
derivative of (43) with respect to coordinaterj,$ is given by
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The Þrst three terms on the right-hand side are not difÞcult to
compute. However, the fourth term shows that the gradients
of the polarizable scattering areO(n3) without use of PME.
SpeciÞcally, there are 3n ' 3n induced dipole density deri-
vatives, each of which is the sum of 3n terms. In this work, we
have computed these derivatives by Þnite differences using
PME, which isO(n2logn).
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Supplementary Information: Higher Order Cartesian Gaussian Multipole Tensors  

Although the AMOEBA force field does not include octopole or hexadecapole moments, future 

scattering models based on Cartesian Gaussian multipoles may. Therefore, we present the 3rd
, 4

th 

and 5th order tensors and the derivatives of the 3rd and 4th order tensors with respect to both ADP 

and !  parameters for future convenience. 

 



Cartesian Gaussian Tensors  of 3 rd, 4th and 5 th Order  

! " ! #! $% r( ) = & 2'( )
&3 2 ai Ui

&1/2
e

&
1
2

r t Ui
&1r

i =1

n

(

)
r tUi

&1u"( ) r tUi
&1u#( ) r tUi

&1u$( )& r tUi
&1u"( )Ui,#$

&1

& r tUi
&1u#( )Ui," $

&1 & r tUi
&1u$( )Ui," #

&1

*

+

,
,

-

.

/
/

! " ! #! $! 0% r( ) = 2'( )
&3 2 ai Ui

&1/2
e

&
1
2

r t Ui
&1r

i =1

n

(

)

r tUi
&1u"( ) r tUi

&1u#( ) r tUi
&1u$( ) r tUi

&1u0( )

& r tUi
&1u"( ) r tUi

&1u#( )Ui,$0
&1 & r tUi

&1u"( ) r tUi
&1u$( )Ui,#0

&1

& r tUi
&1u"( ) r tUi

&1u0( )Ui,#$
&1 & r tUi

&1u#( ) r tUi
&1u$( )Ui," 0

&1

& r tUi
&1u#( ) r tUi

&1u0( )Ui," $
&1 & r tUi

&1u$( ) r tUi
&1u0( )Ui," #

&1

+Ui," #
&1 Ui,$0

&1
+Ui," $

&1 Ui,#0
&1

+Ui," 0
&1 Ui,#$

&1

*

+

,
,
,
,
,
,
,
,

-

.

/
/
/
/
/
/
/
/

! " ! #! $! 0! 1% r( ) = & 2'( )
&3 2 ai Ui

&1/2
e

&
1
2

r t Ui
&1r

i =1

n

(

)

r tUi
&1u1( ) r tUi

&1u"( ) r tUi
&1u#( ) r tUi

&1u$( ) r tUi
&1u0( )*+

& r tUi
&1u"( ) r tUi

&1u#( )Ui,$0
&1 & r tUi

&1u"( ) r tUi
&1u$( )Ui,#0

&1

& r tUi
&1u"( ) r tUi

&1u0( )Ui,#$
&1 & r tUi

&1u#( ) r tUi
&1u$( )Ui," 0

&1

& r tUi
&1u#( ) r tUi

&1u0( )Ui," $
&1 & r tUi

&1u$( ) r tUi
&1u0( )Ui," #

&1

+Ui," #
&1 Ui,$0

&1
+Ui," $

&1 Ui,#0
&1

+Ui," 0
&1 Ui,#$

&1 -.

& r tUi
&1u"( ) r tUi

&1u#( ) u1
t Ui

&1u$( )Ui,$1
&1

& r tUi
&1u"( ) r tUi

&1u#( ) r tUi
&1u$( )Ui,01

&1

& r tUi
&1u"( ) r tUi

&1u$( ) r tUi
&1u0( )Ui,#1

&1

& r tUi
&1u#( ) r tUi

&1u$( ) r tUi
&1u0( )Ui," 1

&1

+ r tUi
&1u"( ) Ui,#$

&1 Ui,01
&1

+Ui,#0
&1 Ui,$1

&1
+Ui,#1

&1 Ui,$0
&1*+ -.

+ r tUi
&1u#( ) Ui," $

&1 Ui,01
&1

+Ui," 0
&1 Ui,$1

&1
+Ui," 1

&1 Ui,$0
&1*+ -.

+ r tUi
&1u$( ) Ui," #

&1 Ui,01
&1

+Ui," 0
&1 Ui,#1

&1
+Ui," 1

&1 Ui,#0
&1*+ -.

+ r tUi
&1u0( ) Ui," #

&1 Ui,1$
&1

+Ui," $
&1 Ui,#1

&1
+Ui," 1

&1 Ui,#$
&1*+ -.

2

3

4
4
4
4
4
4
4
4
4
4
4
4

5

4
4
4
4
4
4
4
4
4
4
4
4

6

7

4
4
4
4
4
4
4
4
4
4
4
4

8

4
4
4
4
4
4
4
4
4
4
4
4

 (1) 



Derivative with respect to ADPs of 3
rd

 and 4
th

 Order Cartesian Gaussian Tensors 
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Derivative with respect to the Width of 3 rd and 4 th Order Cartesian Gaussian Tensors  

 

! " # " $" %& r( )'( )*
! +

= , 2-( ), 3 2 ai Ui

, 1/2
e

,
1
2

r t Ui
, 1r

i =1

n

.

/

1
2

, r tJi
+( )r , Ui

, 1 ! Ui

! +

0

12
3

45
r tUi

, 1u#( ) r tUi
, 1u$( ) r tUi

, 1u%( )'(

, r tUi
, 1u#( )Ui,$%

, 1 , r tUi
, 1u$( )Ui,#%

, 1 , r tUi
, 1u%( )Ui,#$

, 1 )*

+ r tJi
+( )u#( ) r tUi

, 1u$( ) r tUi
, 1u%( ) + r tUi

, 1u#( ) r tJi
+( )u$( ) r tUi

, 1u%( )
+ r tUi

, 1u#( ) r tUi
, 1u$( ) r tJi

+( )u%( ) , r tJi
+( )u#( )Ui,$%

, 1 , r tJi
+( )u$( )Ui,#%

, 1

, r tJi
+( )u%( )Ui,#$

, 1 , r tUi
, 1u#( )Ji ,$%

+( ) , r tUi
, 1u$( )Ji ,#%

+( ) , r tUi
, 1u%( )Ji ,#$

+( )

6

7

8
8
8
8
8

9

8
8
8
8
8

:

;

8
8
8
8
8

<

8
8
8
8
8

! " # " $" %" =& r( )'( )*
! +

= 2-( ), 3 2 ai Ui

, 1/2
e

,
1
2

r t Ui
, 1r

i =1

n

.

/

1
2

, r tJi
+( )r , Ui

, 1 ! Ui

! +

0

12
3

45

/

r tUi
, 1u#( ) r tUi

, 1u$( ) r tUi
, 1u%( ) r tUi

, 1u=( )
, r tUi

, 1u#( ) r tUi
, 1u$( )Ui,%=

, 1 , r tUi
, 1u#( ) r tUi

, 1u%( )Ui,$=
, 1 , r tUi

, 1u#( ) r tUi
, 1u=( )Ui,$%

, 1

, r tUi
, 1u$( ) r tUi

, 1u%( )Ui,#=
, 1 , r tUi

, 1u$( ) r tUi
, 1u=( )Ui,#%

, 1 , r tUi
, 1u%( ) r tUi

, 1u=( )Ui,#$
, 1

+Ui,#$
, 1 Ui ,%=

, 1 +Ui,#%
, 1 Ui ,$=

, 1 +Ui,#=
, 1 Ui ,$%

, 1

'

(

>
>
>
>
>
>

)

*

?
?
?
?
?
?

+ r tJi
+( )u#( ) r tUi

, 1u$( ) r tUi
, 1u%( ) r tUi

, 1u=( ) + r tUi
, 1u#( ) r tJi

+( )u$( ) r tUi
, 1u%( ) r tUi

, 1u=( )
+ r tUi

, 1u#( ) r tUi
, 1u$( ) r tJi

+( )u%( ) r tUi
, 1u=( ) + r tUi

, 1u#( ) r tUi
, 1u$( ) r tUi

, 1u%( ) r tJi
+( )u=( )

, r tJi
+( )u#( ) r tUi

, 1u$( )Ui,%=
, 1 + r tUi

, 1u%( )Ui,$=
, 1 + r tUi

, 1u=( )Ui,$%
, 1'( )*

, r tJi
+( )u$( ) r tUi

, 1u#( )Ui,%=
, 1 + r tUi

, 1u%( )Ui,#=
, 1 + r tUi

, 1u=( )Ui,#%
, 1'( )*

, r tJi
+( )u%( ) r tUi

, 1u#( )Ui,$=
, 1 + r tUi

, 1u$( )Ui,#=
, 1 + r tUi

, 1u=( )Ui,#$
, 1'( )*

, r tJi
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Define  a term  of  the spherical  and anisotropic  scattering  density  
given  in  Eq. (6).

H* Position vector relative to the atomic center . *L
r = 8x, y, z<;
H* ADP matrix *L
U = 88Subscript @u, 1, 1D, Subscript @u, 1, 2D, Subscript @u, 1, 3D<,

8Subscript @u, 1, 2D, Subscript @u, 2, 2D, Subscript @u, 2, 3D<,
8Subscript @u, 1, 3D, Subscript @u, 2, 3D, Subscript @u, 3, 3D<<;

Ui = U + HSubscript @b, i D• H8 * p ^ 2 * k^ 2L + Subscript @u, addDL * IdentityMatrix @3D;
detUi = Det @Ui D;
invUi = Inverse @Ui D;
H* One term of the spherical , anisotropic scattering factor given in Eq. H6L *L
ri = H2 * pL ^ H-3 • 2L * Subscript @a, i D* detUi ^ H-1 • 2L * Exp@- r . invUi . r • 2D;



Construct  and plot  example  aspherical  and anisotropic  scattering  
densities  as given  in  Eq. (16).

rix = D@ri , xD;
riy = D@ri , yD;
riz = D@ri , zD;
rixx = D@rix , xD;
riyy = D@riy , yD;
rizz = D@riz , zD;
rixy = D@rix , yD;
riyz = D@riy , zD;
rixz = D@rix , zD;

H* Varying the multipole coefficients below while observing the
isosurface plots provides intuition into the characteristics of the
aspherical and anisotropic Cartesian Gaussian multipole basis set . The
default coefficients produce an axial quadrupole along the Z-axis . *L

q = 0;
dx = 0;
dy = 0;
dz = 0;
qxx = -1;
qyy = -1;
qzz = 2;
qxy = 0;
qxz = 0;
qyz = 0;

H* Make the quadrupole traceless *L
qave = Hqxx + qyy + qzz L • 3;
qxx = qxx - qave ;
qyy = qyy - qave ;
qzz = qzz - qave ;

radp = -q * ri + dx * rix + dy * rix + dz * riz -

1 • 3 Hqxx * rixx + qyy * riyy + qzz * rizz + 2 * Hqxy * rixy + qxz * rixz + qyz * riyz LL;

H* Apply an isotropic ADP. *L
rplot =

FullSimplify @radp • . Subscript @b, i D Ø 1 • . Subscript @a, i D Ø 1 • . Subscript @u, 1, 1D Ø 1 • .
Subscript @u, 1, 2D Ø 0 • . Subscript @u, 1, 3D Ø 0 • . Subscript @u, 2, 2D Ø 1 • .

Subscript @u, 2, 3D Ø 0 • . Subscript @u, 3, 3D Ø 1 • . k Ø 1 • . Subscript @u, addD Ø 0D;

ContourPlot3D @rplot , 8x, -3, 3<, 8y, -3, 3<, 8z, -3, 3<,
Contours Ø 88-0.01 , 8Red, Specularity @White , 50D<<, 80.01 , 8Blue , Specularity @White , 50D<<<,
Mesh Ø None, Boxed Ø False , Axes Ø False , ColorFunctionScaling Ø False ,
Lighting Ø 88" Directional " , RGBColor @1, 1, 1D, 881, 0, 1<, 80, 0, 0<<<<D

H* Apply an anisotropic ADP Huxx = 1.5 , uyy = 1, uzz = 1L
to thermally smear the density along the X-axis . *L

rplot = FullSimplify @
radp • . Subscript @b, i D Ø 1 • . Subscript @a, i D Ø 1 • . Subscript @u, 1, 1D Ø 1.5 • .

Subscript @u, 1, 2D Ø 0 • . Subscript @u, 1, 3D Ø 0 • . Subscript @u, 2, 2D Ø 1 • .
Subscript @u, 2, 3D Ø 0 • . Subscript @u, 3, 3D Ø 1 • . k Ø 1 • . Subscript @u, addD Ø 0D;

ContourPlot3D @rplot , 8x, -3, 3<, 8y, -3, 3<, 8z, -3, 3<,
Contours Ø 88-0.01 , 8Red, Specularity @White , 50D<<, 80.01 , 8Blue , Specularity @White , 50D<<<,
Mesh Ø None, Boxed Ø False , Axes Ø False , ColorFunctionScaling Ø False ,
Lighting Ø 88" Directional " , RGBColor @1, 1, 1D, 881, 0, 1<, 80, 0, 0<<<<,
ContourStyle Ø Directive @Specularity @White , 50DDD
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Verify  analytic  forms  of  the Cartesian  Gaussian  multipole  tensors  
from  Eq. (18). 

r ixxx = D@r ixx , xD;
r ixxy = D@r ixx , yD;
r ixyz = D@r ixy , zD;
r ixxxx = D@r ixxx , xD;
r ixxxxx = D@r ixxxx , xD;

H* x unit vector * L
ux = 81, 0, 0<;
H* y unit vector * L
uy = 80, 1, 0<;
H* z unit vector * L
uz = 80, 0, 1<;

tx = - r i * Hr . invUi . uxL;
txx = r i * HHr . invUi . uxL^ 2 - invUi @@1, 1DDL;
txy = r i * HHr . invUi . uxL * Hr . invUi . uyL - invUi @@1, 2DDL;
txxx = - r i * HHr . invUi . uxL^ 3 - 3 * Hr . invUi . uxL * invUi @@1, 1DDL;
txxy = - r i * HHr . invUi . uxL^ 2 * Hr . invUi . uyL -

2 * Hr . invUi . uxL * invUi @@1, 2DD - Hr . invUi . uyL * invUi @@1, 1DD L;
txyz = - r i * HHr . invUi . uxL * Hr . invUi . uyL * Hr . invUi . uzL - Hr . invUi . uxL * invUi @@2, 3DD -

Hr . invUi . uyL * invUi @@1, 3DD - Hr . invUi . uzL * invUi @@1, 2DD L;
txxxx = r i * HHr . invUi . uxL^ 4 - 6 * Hr . invUi . uxL^ 2 * invUi @@1, 1DD + 3 * invUi @@1, 1DD^ 2L;
txxxxx = - r i *

HHr . invUi . uxL^ 5 - 10 * Hr . invUi . uxL^ 3 * invUi @@1, 1DD + 15 * Hr . invUi . uxL * invUi @@1, 1DD^ 2L;

FullSimplify @r ix - tx D
FullSimplify @r ixx - txx D;
FullSimplify @r ixy - txy D;
FullSimplify @r ixxx - txxx D;
FullSimplify @r ixxy - txxy D;
FullSimplify @r ixyz - txyz D;
FullSimplify @r ixxxx - txxxx D;
FullSimplify @r ixxxxx - txxxxx D
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Verify  analytic  derivatives  of  the Cartesian  Gaussian  multipole  
tensors  with  respect  to  ADPs given  in  Eq. (28). 

H* The matrices Jxx and Jyy are constructed
for convenience and are examples of Eq. H26L. *L

Jxx = Simplify @- invUi . D@Ui , Subscript @u, 1, 1DD. invUi D;
Jxy = Simplify @- invUi . D@Ui , Subscript @u, 1, 2DD. invUi D;
Simplify @D@invUi , Subscript @u, 1, 1DD- Jxx D
Simplify @D@invUi , Subscript @u, 1, 2DD- Jxy D

riU11 = D@ri , Subscript @u, 1, 1DD;
riU12 = D@ri , Subscript @u, 1, 2DD;
rixU11 = D@rix , Subscript @u, 1, 1DD;
rixU12 = D@rix , Subscript @u, 1, 2DD;
rixxU11 = D@rixx , Subscript @u, 1, 1DD;
rixxU12 = D@rixx , Subscript @u, 1, 2DD;
rixyU11 = D@rixy , Subscript @u, 1, 1DD;
rixyU12 = D@rixy , Subscript @u, 1, 2DD;
rixxxU11 = D@rixxx , Subscript @u, 1, 1DD;
rixxxU12 = D@rixxx , Subscript @u, 1, 2DD;

tU11 = ri * H1 • 2 * H- r . Jxx . r - invUi @@1, 1DDLL;
tU12 = ri * H1 • 2 * H- r . Jxy . r - 2 * invUi @@1, 2DDLL;
txU11 = -ri * H1 • 2 * H- r . Jxx . r - invUi @@1, 1DDL * r . invUi . ux + r . Jxx . ux L;
txU12 = -ri * H1 • 2 * H- r . Jxy . r - 2 * invUi @@1, 2DDL * r . invUi . ux + r . Jxy . ux L;
txxU11 = ri * H1 • 2 * H- r . Jxx . r - invUi @@1, 1DDL * HHr . invUi . ux L ^ 2 - invUi @@1, 1DDL +

2 * Hr . Jxx . ux L * Hr . invUi . ux L - Jxx @@1, 1DDL;
txxU12 = ri * H1 • 2 * H- r . Jxy . r - 2 * invUi @@1, 2DDL * HHr . invUi . ux L ^ 2 - invUi @@1, 1DDL +

2 * Hr . Jxy . ux L * Hr . invUi . ux L - Jxy @@1, 1DDL;
txyU11 = ri * H1 • 2 * H- r . Jxx . r - invUi @@1, 1DDL * HHr . invUi . ux L * Hr . invUi . uy L - invUi @@1, 2DDL +

Hr . Jxx . ux L * Hr . invUi . uy L + Hr . Jxx . uy L * Hr . invUi . ux L - Jxx @@1, 2DDL;
txyU12 = ri * H1 • 2 * H- r . Jxy . r - 2 * invUi @@1, 2DDL * HHr . invUi . ux L * Hr . invUi . uy L - invUi @@1, 2DDL +

Hr . Jxy . ux L * Hr . invUi . uy L + Hr . Jxy . uy L * Hr . invUi . ux L - Jxy @@1, 2DDL;
txxxU11 = -ri * H1 • 2 * H- r . Jxx . r - invUi @@1, 1DDL *

HHr . invUi . ux L ^ 3 - 3 * Hr . invUi . ux L * invUi @@1, 1DDL + 3 * Hr . Jxx . ux L * Hr . invUi . ux L ^ 2 -

3 * Hr . invUi . ux L * Jxx @@1, 1DD- 3 * Hr . Jxx . ux L * invUi @@1, 1DDL;
txxxU12 = -ri * H1 • 2 * H- r . Jxy . r - 2 * invUi @@1, 2DDL *

HHr . invUi . ux L ^ 3 - 3 * Hr . invUi . ux L * invUi @@1, 1DDL + 3 * Hr . Jxy . ux L * Hr . invUi . ux L ^ 2 -

3 * Hr . invUi . ux L * Jxy @@1, 1DD- 3 * Hr . Jxy . ux L * invUi @@1, 1DDL;

FullSimplify @riU11 - tU11 D
FullSimplify @riU12 - tU12 D;
FullSimplify @rixU11 - txU11 D;
FullSimplify @rixU12 - txU12 D;
FullSimplify @rixxU11 - txxU11 D;
FullSimplify @rixxU12 - txxU12 D;
FullSimplify @rixyU11 - txyU11 D;
FullSimplify @rixyU12 - txyU12 D;
FullSimplify @rixxxU11 - txxxU11 D;
FullSimplify @rixxxU12 - txxxU12 D
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Verify  analytic  derivatives  of  the Cartesian  Gaussian  multipole  
tensors  with  respect  to  k given  in  Eq. (34). 

H* Intermediate term given in Eq. H30L. *L
Ui k = -3 * Subscript @b, i D^ 3 • H256 * p ^ 6 * k^ 7L -

Subscript @b, i D^ 2 * HSubscript @u, 1, 1D+ Subscript @u, 2, 2D+

Subscript @u, 3, 3D+ 3 * Subscript @u, addDL • H16 * p ^ 4 * k^ 5L +

Subscript @b, i D* I Subscript @u, 1, 2D^ 2 + Subscript @u, 1, 3D^ 2 + Subscript @u, 2, 3D^ 2 -

Subscript @u, 1, 1D* Subscript @u, 2, 2D- Subscript @u, 1, 1D* Subscript @u, 3, 3D-

Subscript @u, 2, 2D* Subscript @u, 3, 3D- 2 * Subscript @u, addD* HSubscript @u, 1, 1D +

Subscript @u, 2, 2D + Subscript @u, 3, 3DL - 3 * Subscript @u, addD2M‘ H4 * p ^ 2 * k^ 3L;
FullSimplify @Ui k - D@detUi , kDD
H* Matrix Jk is constructed for convenience as in Eq. H33L. *L
Jk = Simplify @Subscript @b, i D• H4 * p ^ 2 * k^ 3L * invUi . invUi D;
FullSimplify @Jk - D@invUi , kDD
ri k = D@ri , kD;
rix k = D@rix , kD;
rixx k = D@rixx , kD;
rixy k = D@rixy , kD;
rixxx k = D@rixxx , kD;

t k = ri * H1 • 2L * H- r . Jk. r - Ui k • detUi L;
tx k = -ri * HH1 • 2L * H- r . Jk. r - Ui k • detUi L * Hr . invUi . ux L + r . Jk. ux L;
txx k = ri * HH1 • 2L * H- r . Jk. r - Ui k • detUi L * HHr . invUi . ux L ^ 2 - invUi @@1, 1DDL +

2 * Hr . Jk. ux L * Hr . invUi . ux L - Jk@@1, 1DDL;
txy k = ri * HH1 • 2L * H- r . Jk. r - Ui k • detUi L * HHr . invUi . ux L * Hr . invUi . uy L - invUi @@1, 2DDL +

Hr . Jk. ux L * Hr . invUi . uy L + Hr . Jk. uy L * Hr . invUi . ux L - Jk@@1, 2DDL;
txxx k = -ri * HH1 • 2L * H- r . Jk. r - Ui k • detUi L * HHr . invUi . ux L ^ 3 - 3 * Hr . invUi . ux L * invUi @@1, 1DDL +

3 * Hr . Jk. ux L * Hr . invUi . ux L ^ 2 -

3 * Hr . invUi . ux L * Jk@@1, 1DD- 3 * Hr . Jk. ux L * invUi @@1, 1DDL;

FullSimplify @ri k - t kD
FullSimplify @rix k - tx kD;
FullSimplify @rixx k - txx kD;
FullSimplify @rixy k - txy kD;
FullSimplify @rixxx k - txxx kD
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